
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR THESIS

Submarine Behaviour Model for Monte Carlo Simulations

Tomáš Dlask

Supervisor: Ing. Ondřej Hrstka

May 2016

Author statement

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, 16th May 2016 .
signature

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Tomáš D l a s k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Submarine Behaviour Model for Monte Carlo Simulations

Guidelines:

1. Study the submarine and anti-submarine warfare domain.
2. Create environment and risk aware submarine trajectory planner.
3. Develop and integrate submarine behaviour model into Bandit simulator.
4. Create user interface for simulation.

Bibliography/Sources:
[1] Mishra, Mahesh K., et al. "Decision support software for Anti-Submarine warfare mission
 planning within a dynamic environmental context." Systems, Man and Cybernetics (SMC),
 2014 IEEE International Conference on. IEEE, 2014.
[2] Vaněk, Ondřej, et al. "Agent-based model of maritime traffic in piracy-affected waters."
 Transportation research part C: emerging technologies 36 (2013): 157-176.
[3] Hrstka, Ondřej, et al. "BANDIT (Behavioral Agents for Drug Interdiction) - Phase 1 Report"

Bachelor Project Supervisor: Ing. Ondřej Hrstka

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 11, 2016

Abstrakt

Ćılem této práce je vytvořeńı plánovače tras pro ponorky, který umı́ zvažovat
riziko zvolené cesty a je schopen fungovat v prostřed́ı, které se měńı v čase.
K dosáhnut́ı tohoto ćıle jsme vlastńı metodou diskretizovali stavový prostor
(v tomto př́ıpadě oceán) na jednotlivé buňky, v rámci kterých jsou vlastnosti
prostřed́ı homogenńı. Abychom byli schopni poč́ıtat se změnami v prostřed́ı,
navrhli jsme vzorkovaćı metodu Gradually Extending RRT* na základě algo-
ritmu RRT*. U této metody jsme prokázali, že je nejlepš́ı z několika zvažovaných
alternativ. GERRT* jsme testovali v několika prostřed́ıch s diskrétńım časovým
paradigmatem a pokaždé jsme obdrželi uspokojivé výsledky. V neposledńı řadě
jsme vytvořili model chováńı ponorky, který je zasazen do simulačńıho prostřed́ı
BANDIT. Součást́ı práce je také implementace navržených algoritmů v jazyce
Java.

Kĺıčová slova: plánováńı, RRT*, grid, simulace, vzorkováńı

Abstract

The aim of this work is to develop a risk-aware planning method for sub-
marines functioning in dynamic environments with time-variant conditions. To
achieve this goal, a gridding method is introduced that divides a state space
(in this case an ocean) into a set of cells with locally homogeneous conditions.
To capture the changes in the environment, the Gradually Extending RRT*
algorithm is introduced as a modification of RRT*. This new sampling-based
planning method was chosen as the best from multiple considered alternatives.
The GERRT* provided fair results in the tested scenarios with discrete time
paradigm. A behaviour model of a submarine driven by the algorithm was also
created to be employed in the BANDIT simulation interface. The implementa-
tion of the proposed methods in the Java programming language is enclosed.

Keywords: planning, RRT*, grid, simulation, sampling

Acknowledgements

I would like to thank to my supervisor Ing. Ondřej Hrstka for his guidance and useful
advice concerning the thesis. I also wish to express my sincere gratitude to my family and
friends for their unceasing support throughout my studies.

Contents

Thesis overview 1

1 Domain background 3

1.1 Objectives . 3

1.2 Capabilities . 3

1.3 Detection . 4

1.3.1 Historical development and views to the future 5

2 Related work 7

2.1 Planning algorithms . 7

2.1.1 Rapidly-Exploring Random Trees . 7

2.1.2 RRT* . 9

2.1.3 Artificial Bee Colony algorithm . 13

2.1.4 Probabilistic Roadmap . 16

2.2 Simulations . 17

3 Formalization 19

3.1 Grid . 19

3.1.1 Implementation of the grid . 19

3.1.2 Cells . 22

3.2 Cost function . 23

3.2.1 Creating list of cells on given path 23

3.2.2 Time windows . 25

3.2.3 Form of the cost function . 26

3.2.4 Risk of detection . 27

3.3 Problem definition . 29

3.3.1 Constraints on movement . 31

3.4 Algorithms . 31

3.4.1 Unbalanced versions . 33

3.4.2 Balanced versions . 34

3.4.3 Summary of the algorithms . 35

i

4 Implementation 37

4.1 BANDIT . 37

4.1.1 Agent Behaviour Model . 37

4.1.2 The model of a submarine . 38

4.2 Inputs of the path planning process . 39

4.2.1 Grid parameters . 39

4.2.2 Planning algorithm parameters . 41

4.2.3 Parameter tuning . 42

4.3 Output . 43

4.4 Use in practice . 44

5 Evaluation 47

5.1 Comparison of the algorithms . 47

5.1.1 Experiment 1 . 47

5.1.2 Experiment 2 . 49

5.1.3 Experiment 3 . 52

5.1.4 Summary . 53

5.2 Time complexity . 53

5.2.1 Cell size . 54

5.2.2 The optimization radius . 54

5.2.3 Analysis of a single execution . 56

5.2.4 Summary . 58

5.3 Test scenarios . 58

5.3.1 Array of detectors . 58

5.3.2 Obstacle avoidance . 60

5.3.3 Sailing under a detector . 61

5.3.4 Discussion . 61

Conclusion 63

ii

Appendices 68

A CD content 68

B Used settings 69

B.1 Example output . 69

B.2 Experiment 1 . 70

B.3 Experiments 2 and 3 . 70

B.4 Obstacle avoidance . 71

B.5 Array of detectors . 72

B.6 Sailing under a detector . 73

iii

List of Figures

1.1 French submarine Téméraire, picture taken from Alabordache (2005). . . . 4

2.1 Division of a state space into Voronoii cells by RRT, taken from LaValle and
Kuffner (2001). 9

2.2 Illustration of one iteration of the RRT* algorithm. 12

2.3 Illustration to the ABC algorithm for search-evasion planning, taken from
Li et al. (2014) . 13

3.1 Grid in Southern Pacific (equirectangular projection). 20

3.2 Grid with cells in 3 layers. 22

3.3 Comparison of the suggested pm functions. 29

3.4 Comparison of the suggested functions p for variable N 30

3.5 A tree that samples the Eastern Pacific. The meaning of the edge colours is
described in the Section 4.3. 32

4.1 The state diagram of a submarine, as used in the simulation. 39

4.2 The screenshot of the heat map visualised by Google Earth. 44

4.3 The paths drawn on a map by the debug output. 44

4.4 The tree from which one of the paths was taken. 45

5.1 Average costs and their standard deviations. 48

5.2 Average cost values with standard deviations in the second experiment. . . 50

5.3 Comparison of the best paths produced by 6 repetitive runs of each algorithm. 51

5.4 Dependence of the average cost of the best path on amount of nodes N . . . 52

5.5 The average execution time of the algorithms for given N 53

5.6 Evaluation of the influence of the cell size s on the execution time. 55

5.7 The average runtime for various optimization radii. 56

5.8 The times when individual nodes are created during one execution. 57

5.9 The best paths in the environment for various w2 weights. 59

5.10 The best paths across the Mediterranean Sea. 60

5.11 The paths through the detector with exponentially decreasing risk. 61

5.12 The paths under the detector that is active on surface only. 62

iv

List of Tables

3.1 Overview of the parameters of a cell c. 23

5.1 Comparison of the algorithms in the terms of cost of the best path. 47

5.2 Comparison of the algorithms in the terms of execution time. 48

5.3 Comparison of the best cost of the methods with varying node count. . . . 49

5.4 Comparison of the execution time of the methods with varying node count. 49

A.1 Directory structure of the CD. 68

v

Used notation

Symbol Meaning

a,A, . . . z, Z, ε,∆ real numbers, unless stated otherwise
|a| the absolute value of a
R the set of real numbers

RD the set of D-dimensional real vectors
R≥0 the set of non-negative real numbers
[a, b] closed interval of real numbers, includes both a and b

A,B, C, . . . ,Z sets
A ⊂ B A is a subset of B
A× B Cartesian product of sets A and B
A− B a set of all elements from A that are not in B

2A system of all subsets of A
f: A 7→ B the function f has domain A and codomain B

exp(a) ea, where e is the Euler’s number
a ∝ b the value of a is directly proportional to b

a,A, . . . , z,Z,x1,x2,x3 vectors
ai i-th component of vector a

a× b cross product of vectors a and b
a · b dot product of vectors a and b
‖a‖2 Euclidean norm of the vector a

A,B, . . . ,Z graphs

vi

Used abbreviations

Abbreviation Full name

ABC Artificial Bee Colony
ACTUV ASW Continuous Trailing Unmanned Vessel

ASW Antisubmarine Warfare
BANDIT Behavioral Agents for Drug Interdiction

BGERRT* Balanced Gradually Extending RRT*
BRRT*TD Balanced RRT* with Time as Dimension

BSM Behaviour State Machine
DARPA Defense Advanced Research Projects Agency

FSM Finite-state Machine
GE Gradually Extending (refers to both GERRT* and BGERRT*)

GERRT* Gradually Extending RRT* (unbalanced)
GPS Global Positioning System

hFSM Hierarchical Finite State Machine
LOFAR Low Frequency Array
OSCAR Ocean Surface Current Analyses Real-time

USS United States Ship
USV Unmanned Surface Vessel
UUV Unmanned Underwater Vehicle
PRM Probabilistic Roadmap

RD Risk of Detection
RRT Rapidly-Exploring Random Tree

RRT*TD RRT* with Time as Dimension (unbalanced)
Sonar Sound Navigation and Ranging

SOSUS Sound Surveillance System
SURTASS Surveillance Towed Array Sensor System

TD Time as Dimension (refers to both RRT*TD and BRRT*TD)
TW Time Window

vii

Thesis overview

Detection of submarines has become a challenging task in the military branch during

the last decades due to the constantly improving stealth technologies. On the other hand,

the ways of detection are getting broader with the increase in computational power that is

able to process fuzzy information received from detectors with limited abilities. Monitoring

vast areas of sea is an expensive procedure and that is why we would like to predict areas

where a submarine might be located in order to focus the available assets there. In this

thesis we are thus dealing with path planning under this specific domain.

First, we discuss the development of the roles of submarines until the present-day

and also debate on their capabilities in the Chapter 1. Additionally, both the traditional

and the state-of-the-art methods of detection are listed with a brief commentary on their

functioning and efficacy.

Next, four sampling-based methods of path planning in static environment are intro-

duced in the Chapter 2. We mention Rapidly-Exploring Random Trees and the asymptot-

ically optimal improvement of this method, RRT*, as invented by Karaman et al. (2011).

After that, we describe an algorithm solving a similar task - path planning for a submarine

that wants to avoid detection. Li et al. (2014) uses the Artificial Bee Colony algorithm

to plan the path. The fourth introduced method is the Probabilistic Roadmap planning.

Lastly, a concise summary of the simulation parameters and characteristics is stated.

In the Chapter 3, a gridding method that produces sampling of the ocean both

horizontally and vertically is presented along with the characteristics of the cells that make

up the grid. Then, the task and constraints are formalized by introducing a cost function

on the basis of the previously defined grid. Eventually, we bring forward four alternatives

of the modified RRT* algorithm that are capable of planning in a dynamic environment.

Chapter 4 deals with the actual implementation of the BANDIT simulation frame-

work and the integration of the submarine model. The many inputs of the gridding method

and path planning process are listed in this chapter with a brief discussion on their meaning,

importance and recommended values. Lastly, the formats of the output are shown.

The performance of the previously presented algorithms is compared in the

Chapter 5. The methods are confronted in the terms of quality of the solution, duration

of computation and stability of the results. The time complexity of the best performing

method is then further analysed and we test it on few scenarios.

1

Chapter 1

Domain background

In this chapter, the purpose and the functions of submarines are described in 1.1,

followed by the appraisal of their abilities in 1.2. Then, both usual and uncommon methods

of detection are explained in 1.3 and their importance is discussed in the course of history

with possible predictions for future development in 1.3.1. The general source for this chapter

is mainly Clark (2015).

1.1 Objectives

Submarines have played an important role in warfare since World War I. Their main

purpose in wartime was to sink the enemy ships, especially targeting convoys in the Second

World War. Later, submarines became capable of attacking each other too. Except that,

their roles nowadays also include reconnaissance, surveillance, performing blockades, de-

ployment of special forces, or protection of other ships. Clark (2015) estimates that in the

future, submarines will not be used as direct participants, but will only serve as mother

ships deploying unmanned underwater vessels (UUVs) that would perform assignments in

hostile waters and could replace the manned vessels to some extent.

Outside of the military branch, submarines can also be used by civilians in oceanogra-

phy or tourism. In addition, so-called narco submarines are used by smugglers to transport

drugs.

1.2 Capabilities

In the first half of the 20th century, the diesel electric submarines were only capable

of staying 1-2 days below surface. For instance, in the operation Sandblast, USS Triton

circumnavigated the globe in 83 days, but had to ventilate and specify its position with an

sextant every day, according to Lundquist (2013). Because the whole hull did not need to

surface, the voyage of USS Triton is considered to be the first vessel to accomplish a round-

the-world tour submerged. The position of the submarine during the day was estimated

using dead reckoning navigation; that means by calculating the direction and speed of

movement and also taking the influence of currents into account.

3

Figure 1.1: French submarine Téméraire, picture taken from Alabordache (2005).

With the development of nuclear power and the ability to extract oxygen from sea-

water, state-of-the-art submarines are capable of staying submerged almost indefinitely.

However, there are still reasons for surfacing, for example limited food supplies for the

crew or navigation. Speaking about navigation, GPS does not receive signal underwater,

therefore accelerometers are used in submarines to estimate their position. But they exhibit

inaccurate behaviour and after one day of voyage, the difference of calculated and actual

position may grow up to 1 kilometre. This issue could be solved by a newly introduced

quantum positioning system that is approximately 1000 times more accurate than currently

used accelerometers. After testing, the system could not only be used in submarines, but

also in other environments where GPS signal can not be received or would be critical to

lose, according to Marks (2014).

The maximal speed of modern submarines is usually over 30 knots (55 kilometres per

hour) and increases when the submarine dives due to the fact that its shape is optimized

to reduce the drag in the submerged state. State-of-the-art submarines have test depth in

the range between 200 and 400 metres.

1.3 Detection

As explained in Wren and May (1997), the detection methods can be divided into

acoustic and non-acoustic. The most known acoustic methods are passive and active sonar;

with the active sonar, a vessel or buoy emits a signal and measures whether it will hear an

echo. The passive sonar only listens to the sources of noise in its surroundings.

Magnetic anomaly detection is an example of a non-acoustic method. It detects the

changes in magnetic field caused by the hull of a submarine. Next, the movement of a vessel

creates waves on the surface, such as the Bernoulli hump, Kelvin waves or internal waves.

These phenomena are futher described in Wren and May (1997) and also represent the

non-acoustic methods of detection. As also mentined in Jenkins (2012), the turbulences

that the movement generates may cause the bioluminescent living organisms in sea to emit

light and indirectly disclose the position of a boat.

4

Additionally, the whereabouts of a nuclear submarine can be revealed due to the

heat that is generated by its reactor. It produces warmer water that rises to the surface

and could be uncovered by infra red sensors. Similarly, a diesel submarine can be detected

by its hot exhaust fumes if the vessel is snorkeling1.

1.3.1 Historical development and views to the future

In both World Wars, the main methods of antisubmarine warfare (ASW) were vi-

sual detection, radar detection, locating radio transmission, or de-cyphering its content.

The passive sonar could not successfully detect submerged vessels that quietly ran using

their electric motors. However, this changed with the nuclear submarines that produced

more noise from their machinery. Therefore, in the second half of the 20th century, the

Sound Surveillance System (SOSUS) was created by the United States to detect Soviet

submarines. The system was implemented on the east coast of the Northern America and

the western coast of Europe. Listening posts were also located in the GIUK2 gap in order

to be aware of any Soviet submarines entering the Atlantic ocean.

The system showed its abilities for example in the project Azorian in the late 1960s,

when the records of SOSUS and LOFAR (Low Frequency Array) detected an implosion and

estimated its location to places where the Soviets conducted search activities, as mentioned

in Aid et al. (2010). After the Soviet’s search activities decreased, USS Halibut was able

to find a wreck of a Soviet submarine in the predicted area in three weeks.

Similar system can also be implemented as a mobile device - for instance as in Surveil-

lance Towed Array Sensor System (SURTASS) or Sonar 2087. According to Department

of the Navy; Defence Supplier Directory, in these systems, a ship uses its active sonar and

also tows an array of passive sensors that are able to either measure the reflection from a

submarine located below the ship or function entirely passively.

Nowadays, the newest submarines are quiet and leave only little trace, causing the

passive sonar to lose its efficiency. An incident from 2009 may support this claim; a British

and a French submarine rammed each other, according to Burns (2009). Due to being

armed with ballistic missiles and patrolling, active sonar was not used in neither of the

submarines. In addition, both boats had their hulls covered in anechoic tile that eliminated

the chances of mutual detection.

However, with the increase in computational power, even the small changes in the

environment that the vessels leave can reveal them when the big data approach is used in

combination with various sensors. This could for example be fuzzy information obtained

from a sonar or even the ripples on the ocean surface that were left by a submarine passing

underneath, as mentioned in Freedberg (2015). In the future, it is likely that extensive

low-frequency active sonar arrays might be an important element in ASW. Steve Walker,

DARPA deputy director, claimed in Magnuson (2016); Gady (2016) that the military may

focus more on diversification of its assets and not rely mainly on individual submarines.

1A diesel submarine is snorkeling (also known as snorting) if the only part that is above surface is a
tube for air intake and exhaust.

2Greenland - Iceland - United Kingdom

5

Vincent (2016) informs that an ASW Continuous Trail Unmanned Vessel (ACTUV)

was christened in April 2016 and its main purpose is tracking the enemy submarines. The

project also produced some civilian uses, for example pushing the quality of autonomous

behaviour of vessels further.

6

Chapter 2

Related work

In this chapter, four stochastic methods are introduced, they serve as planning meth-

ods that can be used in environments with obstacles. We start with the RRT in the Section

2.1.1 and its improvement RRT* in 2.1.2. Next, the Artificial Bee Colony algorithm is in-

troduced in 2.1.3 and the last mentioned method is the Probabilistic Roadmap planning

in 2.1.4. Eventually, an introduction to the field of simulations is presented in 2.2.

2.1 Planning algorithms

In this context, the task of a planning algorithm is to find a usually optimal trajectory

from a start point to a target. We could not utilize A* (described in Hart et al. (1968)) or

another deterministic algorithm that finds the optimal path, because it requires substantial

amount of cost function computations. That would considerably slow the algorithm down

in our case due to the computationally demanding cost function evaluation. Additionally,

we would like to use a stochastic planner that provides non-deterministic results in order

to use them as an input for Monte Carlo simulations. Both these conditions are satisfied by

the presented algorithms, RRT, RRT* and PRM, that are based on random sampling, do

not require to determine the cost function too many times and are usable in randomized

simulations.

2.1.1 Rapidly-Exploring Random Trees

RRT, as introduced in LaValle (1998) and further elaborated in LaValle and Kuffner

(2001), is a sampling-based planning algorithm that addresses kinodynamic or non-holonomic

constraints in a multi-dimensional space. Since the planning in our simulations will be done

from a distant point of view on the scale of kilometres, not considering individual steering

and accelerating abilities of vessels, there will not be any dynamic constraints. The only

constraints will be limited speed and maximal time that a vessel is able to spend below

surface, these are discussed in 3.3.1.

In the Algorithm 1, a tree is built in a given state space S starting with the initial

vertex pinit ∈ S as its root. Then, the iterative process of extending the tree is applied.

7

First, the function get random state() is called. It returns a random vertex prandom from

the state space uniformly. Second, the function find nearest(prandom) is used to find the ver-

tex pnear in the tree such that it is the closest one to the prandom. After that, the function

steer(pnear, prandom, ε) returns a vertex pnew that is obtained by movement from pnear
in direction towards prandom for given distance or time period ε. Finally, if the edge be-

tween pnew and pnear is feasible and does not violate any constraints, the vertex pnew is

added into the tree using add vertex(pnew) function and is set as a follower of pnear by

set parent(pnew,pnear). The whole process is repeated until the tree T has enough vertices.

Other stopping conditions can also be used, for example finding a solution or exceeding

the computational time.

Algorithm 1: RRT(N ,pinit,ε)

T ← empty tree();

T.add vertex(pinit);

while T has less than N vertices do
prandom ← get random state();

pnear ← T.find nearest(prandom);

pnew ← steer(pnear, prandom, ε);

if edge between pnew and pnear is feasible then
T.add vertex(pnew);

T.set parent(pnew,pnear);

end

end

return T;

The result of RRT is a feasible sequence of states from pinit to given pgoal. The

algorithm might add the pgoal into the tree during one of its iterations and thus create a

feasible result. That does not need to necessarily happen, yet a solution can be created by

finding a vertex in the tree that is nearby pgoal and the edge between them is feasible.

The algorithm is biased towards exploring the parts of space that were not visited

yet. The reason for this behaviour can be explained simply, but first, the term Voronoi cell

needs to be defined.

Given set of points P = {p1, ..., pn} in a state space S, P ⊂ S and a metric

d: S × S 7→ R≥0, the Voronoi cell belonging to the point pi is a set

Vi = {p ∈ S | d(p, pi) ≤ d(p, pj)∀j ∈ {1, ..., n}}. (2.1)

Now, we can say that the unexplored parts of the space are usually large Voronoi

cells. Therefore, the probability of choosing a point from the large cells is greater than its

occurrence in the smaller cells, under the assumption of uniform sampling.

To better understand the new term, a state space in the form of a square is divided

by RRT with various amount of sampled nodes in the Figure 2.1. In the upper sub-figures,

the trees that represent the current state of exploration are depicted. The divisions of the

space into Voronoi cells corresponding to the trees are shown in the bottom part of the

figure.

8

Figure 2.1: Division of a state space into Voronoii cells by RRT, taken from LaValle and
Kuffner (2001).

Now, it can be stated that the areas in the state space that were not sampled yet

will pose as large Voronoi cells. Thus, in random sampling, the probability of placing a

new node into these areas will be larger than into those that have larger density of already

sampled points. This will lead to the division of the large Voronoi cells and exploration of

new states. This is why RRT is sometimes denoted as a Monte Carlo method.

Another characteristics of this algorithm is its probabilistic completeness, i.e. the

probability of finding a feasible solution approaches one as the number of sampled vertices

approaches infinity if a feasible solution exists.

However, the optimality of the solution is not guaranteed and the algorithm will most

likely find non-optimal solution, as mentioned in Karaman and Frazzoli (2010).

2.1.2 RRT*

According to Karaman et al. (2011), RRT* maintains the tree structure of RRT, but

unlike RRT, it also iteratively optimizes the tree. That results in asymptotic optimality of

the algorithm as its main advantage over RRT.

In RRT*, it is additionally necessary to define a cost function that will assign non-

negative values to sequences of vertices from the state space S. The cost function as in-

troduced in 3.2.3 can not be used directly, because RRT* does not handle changing envi-

ronment in its basic version. Thus, to introduce this algorithm, a simpler version of cost

function is defined as

cost : S × S × · · · × S 7→ R≥0. (2.2)

9

The sequences of cells will be denoted with arrows, for example p1 → p2 → p3 → p4
for a path from p1 via p2 and p3 to p4 in this specified order.

If the intermediate nodes are obvious, the inner parts of the sequences are replaced

by dots, especially if the sequence is taken as a path in the tree from the root to a defined

node. For example, we would like to know the cost of getting from the root of the tree, pinit
to a vertex p in the tree. Then cost(pinit → ...→ p) denotes the cost of travel from the root

via all intermediate edges in the tree till the p vertex. On the other hand, cost(pinit → p)

denotes the cost of the direct path between two vertices in the state space. Both approaches

can be concatenated in an intelligible form, for example going along a path in the tree and

then deflecting to a vertex that is not in the tree.

In addition, a distance function d is also needed to properly define the algorithm.

The function returns the distance between two vertices in the state space S and is formally

defined as

d : S × S 7→ R≥0. (2.3)

Algorithm 2: RRT*(N ,pinit,ε, d)

T ← empty tree();

T.add vertex(pinit);

while T has less than N vertices do
prandom ← get random state();

pnear ← T.find nearest(prandom);

pnew ← steer(pnear, prandom, ε);

if edge between pnew and pnear is feasible then
pbest ← T.find best parent in vicinity(pnew,pnear,d);

T.add vertex(pnew);

T.set parent(pnew,pbest);

T.optimize(pnew,pbest,d);

end

end

return T;

The basic outline of the Algorithm 2 is based on the RRT with the meaning of the

functions already described in the section 2.1.1. Moreover, two other functions are defined:

find best parent in vicinity(pnew,pnear,d) and optimize(pnew,pbest,d).

The former one is presented in the Algorithm 3 and it searches for a predecessor of

the pnew vertex. It iterates over all the vertices in the tree that are closer to pnew than d

and returns the one that will result in the smallest cost for pnew when added to the tree.

Of course, only those vertices that will result in a feasible path are considered. Using this

function, the new vertex pnew is not assigned as a follower to the closest vertex, but to the

one that minimises the final cost of travel.

The latter one, optimize(pnew,pbest,d), defined in the Algorithm 4 also iterates over

all the vertices p in the tree that are closer to pnew than the given distance d and then tries

10

whether setting pnew as a predecessor of p would lower p’s cost. If it does, then pnew is set

as the parent of p and the original connection of p to its parent is disposed.

Algorithm 3: T.find best parent in vicinity(pnew,pnear,d)
pbest ← pnear;

for all vertices p in T where d(p, pnew) ≤ d do

if edge between pnew and p is not feasible then
continue;

end

if cost(pinit → ...→ p→ pnew) <cost(pinit → ...→ pbest → pnew) then
pbest ← p;

end

end

return pbest;

Algorithm 4: T.optimize(pnew,pbest,d)

for all vertices p in T where d(p, pnew) ≤ d and p 6= pbest do

if edge between pnew and p is not feasible then
continue;

end

if cost(pinit → ...→ pnew → p) <cost(pinit → ...→ p) then
T.set parent(p,pnew);

end

end

To make the algorithm more clear, an example of one iteration that adds a node to

the tree is shown in the Figure 2.2. The tree that enters the iteration is shown in the Figure

2.2a. The node prandom is randomly chosen from the state space and the node pnear that is

the nearest to prandom from all the nodes in the tree is found, as shown in the Figure 2.2b.

Illustrated in the Figure 2.2c, the steer function produces the node pnew that is in

the distance ε from pnear in the direction towards prandom. Next, the pnew is connected to

its parent pbest that minimises the cumulative distance from pinit to pnew. We only look for

the candidates for pbest in the radius d, as pictured in the Figure 2.2d.

Finally, the optimizing function looks for nodes in the radius d that would get their

cost lowered if they were connected directly to the pnew node instead of their current

parent. In the Figure 2.2e, we can see that one node is joined as a follower of pnew, because

it shortens its cumulative distance to pinit. The connection of the node to its original parent

is annulled. This operation finishes the iteration and the tree that enters the next iteration

is shown in the Figure 2.2f.

11

(a) The tree that will be extended.
(b) Generated prandom and found the nearest node
pnear.

(c) The steer function produces the pnew. (d) pnew is connected to pbest

(e) A vertex is rewired as a successor of pnew. (f) The tree after the iteration.

Figure 2.2: Illustration of one iteration of the RRT* algorithm.

12

Figure 2.3: Illustration to the ABC algorithm for search-evasion planning, taken from Li
et al. (2014)

2.1.3 Artificial Bee Colony algorithm

Li et al. (2014) proposed an evolutionary algorithm for planning search-evading paths

for submarines. In the paper, the threat regions were represented as circles that a submarine

should avoid. The algorithm first connects the starting point S and the target point T with

a straight line and divides it into D+ 1 line segments by introducing lines L1, . . . , LD that

are perpendicular to the line defined by the points S and T . Next, the coordinate system

is rotated in order to move S to the origin and T on the horizontal axis.

Then, a path in this coordinate system is defined as a vector z = (z1, . . . , zD), where

zk is the vertical coordinate of the point where the path intersects the perpendicular Lk,

as shown in the Figure 2.3.

In this method, the length of the path is taken into account and crossing through

threat regions is penalized. Given these conditions, a vector z∗ ∈ RD is seek that minimizes

the cost function. Formally, the function that returns the costs is defined as

cost : RD 7→ R. (2.4)

Informally, there are B bees in the ABC algorithm that are divided into two groups,

first half are the employed bees and the other half are the onlooker bees. The employed bees

hold their configurations while the onlooker bees search around them and try to find better

configurations. Technically, there is also a third type of bees, scout bees. An employed bee

becomes a scout bee if its configuration has not improved in the predefined amount of

iterations. The scout bee is assigned a random configuration by the random initialization()

function and after that, it becomes an employed bee again.

Formally, the Algorithm 5 searches for the vector xi that will minimize cost(xi). The

variables ti denote the number of times the vector xi was tried to be improved, but it

did not. The k-th value of vector xi is denoted as xik. The vector xi represents the i-th

employed bee, whereas yi is the i-th onlooker bee.

In the algorithm, the values of ti are initially set to 0 and the values of xi (the em-

ployed bees) are randomly initialized using the random initialization() function presented

in the Algorithm 6. The function returns a vector of dimension D with limited bounds

for each component of the vector. The lower bound of each dimension is in the vector

13

min ∈ RD and the upper bounds in the max ∈ RD vector. In detail, the vector is chosen

from the set V, as defined in the Equation 2.5. The function rand(M) returns a random

value from the set M. If the set M is infinitely large, then it is chosen with continuous

uniform distribution. On the other hand, if the set M is finite, then the result is chosen

with discrete uniform distribution. Due to technical reasons, the value of xbest is initialized

to x1 and it maintains the best result found so far during the algorithm.

V = [min1,max1]× [min2,max2]× · · · × [minD,maxD] (2.5)

After the initialization, the iterative cycle starts. In the cycle, first the

employed bee phase() is performed. This function, which is described in the Algorithm

7, creates the configuration xi for each employed bee by randomly choosing the dimension

d and the other bee k. Then, the new configuration xi is created by randomly altering

the value of xid to one of the values in the interval [xid − δ,xid + δ], where δ = |xkd − xid|.
Finally, cost of xi is compared to xi. If the changed configuration is better, the value of xi

is overwritten and ti set to zero, because the corresponding value was updated. Otherwise,

ti is increased by one due to the unsuccessful update.

Next, the fitness(i) and P(i) values are calculated for all the employed bees using the

equations in the Algorithm 5. These values are used in the onlooker bee phase(), where

onlooker bees are generated. The values of P(j) are compared to a randomly chosen number

in the interval [0, 1]. If the P(j) is larger than the number, then the i-th onlooking bee

with configuration yi is created using the j-th employed bee xj . The vector yi is generated

using the vector xj and changing its k-th component to one in the interval [xjk− δ,x
j
k + δ],

where δ = |xmk − xjk| and xm is a randomly chosen employed bee other than xj . If the cost

of yi is then lower than xj , the j-th employed bee is redirected to the configuration yi and

the value tj is again reset to 0, otherwise it is increased, as in the employed bee phase().

After both phases, Ω is defined as a set of employed bees that have the values ti
higher than a given threshold limit. If the set is not empty, one bee is chosen, randomly

reinitialized and its ti value is set to 0.

The result of the algorithm is the best solution xbest that was found while iterating.

The value is updated after each iteration by the get best result() function. The function

goes through all the employed bees and returns the one with the lowest cost if its cost is

lower than the best configuration found till now. This straightforward function is described

in the Algorithm 9.

Using the algorithm that was explained above, the result can be interpreted as the

vector z defining the path of the submarine. The ABC can also plan in real-time with

changing environment. That means, the whole path does not need to be planned in advance,

but only the next N points will be planned, i.e. when the submarine crosses the line Li,

it will plan only points zi+1, . . . , zi+N . After this trajectory is executed, the next parts

are planned. The advantage of this process is not only the ability to plan in dynamic

environment, but also dimension reduction, due to N < D.

14

Algorithm 5: ABC(B, limit,min,max)

ti ← 0 for all i = 1, . . . , B2 ;

xi ← random initialization() for all i = 1, . . . , B2 ;

xbest ← x1;

for predefined amount of iterations do
employed bee phase();

fitness(i) ←

{
1

1+cost(xi)
if cost(xi) ≥ 0

1− cost(xi) if cost(xi) < 0
for all i = 1, . . . , B2 ;

P(i) ← fitness(i)∑B
2
j=1 fitness(j)

for all i = 1, . . . , B2 ;

onlooker bee phase();

Ω← {i | ti > limit};
if Ω 6= ∅ then

k ← rand(Ω);

xk ← random initialization();

tk ← 0;
end

xbest ← get best result(xbest);

end

return xbest;

Algorithm 6: random initialization()

z← (0, . . . , 0) ∈ RD;

for i = 1, . . . , D do
zi ←mini+ rand([0, 1]) · (maxj −minj);

end

return z;

Algorithm 7: employed bee phase()

for i = 1, . . . , B2 do

k ← rand({1, . . . , B2 } − {i});
d← rand({1, . . . , D});
xi ← xi;

xid ← xid+ rand([−1, 1]) · (xkd − xid);

end

for i = 1, . . . , B2 do

if cost(xi) < cost(xi) then

xi ← xi;

ti ← 0;
else

ti ← ti + 1;

end

end

15

Algorithm 8: onlooker bee phase()

j ← 1;

for i = 1, . . . , B2 do

if P(j) > rand([0, 1]) then

m← rand({1, . . . , B2 } − {j});
k ← rand({1, . . . , D});
yi ← xj ;

yik ← xjk+rand([−1, 1]) · (xmk − xjk);

if cost(yi) < cost(xj) then

xj ← yi;

tj ← 0;

else
tj ← tj + 1;

end

end

j ← j + 1;
end

Algorithm 9: get best result(xbest)

xmin ← xbest;

for i = 1, . . . , B2 do

if cost(xi) < cost(xmin) then

xmin ← xi;

end

end

return xmin;

2.1.4 Probabilistic Roadmap

Like RRT or RRT*, the Probabilistic Roadmap (PRM) planning is a sampling-based

method capable of running in complex environments and satisfying various conditions on

the result, as stated in Saha (2006). PRM planning is also asymptotically complete.

In PRM, the state space S is divided into two disjunctive sets Sfree, where the object

can be located, and Sobs that represents the obstacles in the state space. Additionally,

it is needed to define the function feasible(p1, p2) that for two given vertices p1, p2 ∈ S
determines whether the edge joining the vertices does not go through the Sobs set and is

therefore feasible.

The algorithm that searches a feasible connection between Vstart and Vtarget can be

divided into two phases. In the first phase, a graph G is created by adding N vertices

from Sfree. For this process, the function random vertex(S) is needed. It returns a random

vertex from the whole state space S that is further checked whether it belongs to Sfree.
The vertices Vstart and Vtarget are also added to the graph.

16

Next, for each vertex V from the graph G, a set H is created that contains the

k nearest neighbours of V in G using the get nearest neighbours(V, k) function. All the

vertices U ∈ H are connected to V via an edge if the edge is feasible, i.e. does not cross

the Sobs area. This way, the graph is constructed.

The second phase involves only the call of plan path(G, Vstart, Vtarget) function. The

function returns a path in the G graph starting in node Vstart and ending in Vtarget. This

can be for example the Dijkstra’s algorithm.

Algorithm 10: PRM(N, k, Vstart, Vtarget)

G← empty graph();

G.add vertex(Vstart);

G.add vertex(Vtarget);

while G has fewer vertices than N do
V ← random vertex(S);

if V ∈ Sfree then
G.add vertex(V);

end

end

for all vertices V in G do
H ← G.get nearest neighbours(V , k);

for all vertices U ∈ H do

if feasible(V, U) then
G.add edge(V,U);

end

end

end

p← plan path(G, Vstart, Vtarget);

return p;

2.2 Simulations

In agent-based (also called multi-agent or agent-oriented) simulations, there are ac-

tive autonomous entities (agents) that are present in the environment1 defined by the

simulation. Each agent is located in the environment, pursues its goals and interacts with

other agents. The interaction may be limited, as well as the knowledge of an agent about

the whole environment. The agent gains information concerning the environment through

interactions that are mediated through its sensors or inter-agent communication. The in-

teractions are usually spatially restricted so that only those agents that are within reach

can exchange information or perceive each other. Other characteristics of an agent are

pro-activity and reactivity, meaning that it should be able to actively respond to changes

in its surroundings.

The properties of agents mentioned above are contingent on the characteristics of the

environment. For example, it can dynamically change with time or due to agents’ activities

1The agent is not considered a part of the environment, but a separate entity.

17

or be static. Next, the world can behave deterministically, then the outcomes of particular

actions or situations are known and can be predicted, or the world may be stochastic and

the results depend on random variables or unpredictable events. The last distinction is

between continuous and discrete environment. In the latter one, there is only finite amount

of states or locations, as opposed to the former option.

Another property of a simulation is the time advance paradigm. In systems driven

by differential or difference equations, a continuous simulation is usually used. Another

approach is the time-stepped simulation which resembles a timer that updates the agents

and the state of the environment periodically. The last approach mentioned in Klügl (2009)

is a discrete event-based simulation. In this paradigm, a queue of events is maintained and

the time is skipped from one event to the next one, as the state variables do not change

between events.

The term granularity of a simulation determines the level of detail in which the

world is modelled. The basic distinction is between the macro and the micro simulations.

In the former one, the whole environment is described by state variables as a homogeneous

integral unit. On the other hand, the microscopic level consists of multiple entities with

their own variables, various capabilities and behaviour models.

18

Chapter 3

Formalization

This chapter formalizes the used terms. First, the gridding method and characteristics

of cells are introduced in 3.1. Then, the cost function, time windows, risk of detection and

additional issues are discussed in 3.2. The whole task and its constraints are defined in 3.3.

The algorithms that are used to solve the task are then presented in 3.4.

3.1 Grid

In planning tasks, it is beneficial to discretise the continuous real world in order to

simplify computations. Thus, a grid is introduced as a set of cells that fill a given space in

predefined density. In our case, the space is a volume of water.

3.1.1 Implementation of the grid

A popular gridding method partitions Earth’s surface along meridians and parallels in

fixed angular intervals. Meteorological data, such as OSCAR from ESR (2009) or ETOPO

by National Geophysical Data Center (2006), are arranged in this manner. Even though

this arrangement is simple, the main disadvantage is that the size of cells varies significantly

with changing latitude.

To avoid this drawback, the intervals are not fixed in our implementation. Approx-

imating the Earth as a sphere, the coordinates can be computed so that the cells have

roughly the same dimensions by enlarging the zonal intervals as the position of a cell ap-

proaches one of the geographical poles. Thus, the areas covered by the cells are close to

being uniform. A collateral effect of this choice is the uneven position of cells and cre-

ation of cells which may partially lie outside of the designated area, as seen on the eastern

boundary of the grid in the Figure 3.1. Additionally, it is needed to not only sample the

surface, but also the areas below surface. Therefore, more layers of cells at specified vertical

distance are created.

In the Figure 3.1, there are outlined the areas of 409 cells in one layer. It may not

seem so, but even the cells near Antarctica have approximately the same size as those near

19

Figure 3.1: Grid in Southern Pacific (equirectangular projection).

equator. Only the distortion caused by projection from spherical surface to plane results

in the sizes appearing non-uniform.

The grid is defined by the following parameters:

• the position of the area that is discretised, defined by GPS coordinates of north-

western (ϕNorth, λWest) and south-eastern corners (ϕSouth, λEast) of the area,

• the size s of the cells, usually specified in kilometres - the distance from western

to eastern boundary and the distance from northern to southern boundary both

equal s,

• the depth interval ∆d, distance between layers of cells,

• depth m of the deepest layer.

In the Algorithm 11 that creates the grid, the values of longitudes are checked. If

λEast ≤ λWest, then the grid should include also the Date Line. That means that the value

of λEast is increased by 360 degrees to maintain the characteristic that the λEast is larger

than λWest and thus truly eastwards. This will not effect anything, since the values of

longitude are normalized when creating the actual cells. The latitudes and longitudes are

in decimal degrees1. The value R in the algorithm denotes the radius of the Earth.

If the grid should contain the North Pole, it is added separately to avoid problems

in the equations. The South Pole is not an issue since there is no ocean there, but it would

be implemented likewise if the need arose.

Then, two loops generate all the areas to be covered by the cells. The outer loop

changes the latitude by constant value ∆ϕ, this can be done due to the fact that the

1That means that the latitudes are normalized to the interval [-90, 90], where the negative values are
found on the Southern Hemisphere, and the longitudes are real numbers from the interval [-180, 180], where
the negative values are on the Western Hemisphere.

20

surface distance between two parallels with angular difference ∆ϕ is always equal to s. On

the other hand, the surface distance between meridians differs with variable latitude, thus

the value of ∆λ is calculated for every latitude. In this process, all the areas are defined by

the function area(λW, λE, ϕN, ϕS), where λW and λE are the western and eastern longitude

bounds for the area and ϕN and ϕS are the northern and southern latitude bounds.

Algorithm 11: create grid(s,∆d,m,ϕNorth, ϕSouth, λWest, λEast)

G ← ∅;
if λEast ≤ λWest then

λEast ← λEast + 360◦;

end

if ϕNorth = 90◦ then
G ← G ∪ create cells(North Pole,∆d,m);

ϕNorth ← ϕNorth − ε;
end

ϕ← ϕNorth;

∆ϕ← 360◦ · s
2πR

;

while ϕ ≤ ϕSouth do
λ← λWest;

∆λ← 360◦ · s
2πR · cos |ϕ|

;

while λ ≤ λEast do
A← area(λ, λ+ ∆λ, ϕ, ϕ−∆ϕ);

G ← G ∪ create cells(A,∆d,m);

λ← λ+ ∆λ;
end

ϕ← ϕ−∆ϕ;
end

return G;

Algorithm 12: create cells(A,∆d,m)

S ← ∅;
depthmax ← get depth in area(A);

if depthmax ≥ 0 then

S ← S ∪ {cell(A, 0, 0, 12∆d)};
d← 3

2∆d;

while d ≤ depthmax ∧ d ≤ m do

S ← S ∪ {cell(A, d− 1
2∆d, d, d+ 1

2∆d)};
d← d+ ∆d;

end

end

return S;

21

The function create cells(A,∆d,m) returns a set of cells in the predefined area A,

but in different layers. The function first estimates the depth depthmax in the area given by

the function get depth in area(A). If the depth is negative, it means that there is no ocean,

but land. In such case, the function returns an empty set. Otherwise, it starts by adding

the surface cell separately. This cell spans from depth 0 to 1
2∆d and has its representative

depth2 equal to 0. The notation cell(A, dmin, drep, dmax) denotes a cell in the area A that

covers depths from dmin to dmax and has the representative depth drep. The cells that are

not on surface have the depth range equal to ∆d, whereas the surface cells have half of it.

If we define p = max(depthmax,m), there will be exactly N =
⌊ p

∆d

⌋
+ 1 cells. Then,

a cell in the k-th layer, k ∈ 1, ..., N , has its representative depth equal to (k − 1)∆d. The

upper and lower boundaries of the layers are in depths (k − 1
2)∆d. All layers except the

one on the surface have their representative depth equal to their average depth.

In the following text, the grid will be denoted as G, or Gs if the size of the cells needs

to be accentuated.

In the Figure 3.2, the exaggerated shape of the cells is shown with dimensioned s

and ∆d values.

(a) The shape of cells with dimensioned s.

(b) Division of cells into depth layers.

Figure 3.2: Grid with cells in 3 layers.

3.1.2 Cells

As introduced in 3.1.1, each cell is assigned multiple values concerning its position.

In a grid G, each cell c ∈ G has its middle point cM = (ϕ, λ) with latitude ϕ ∈ [−90, 90] and

longitude λ ∈ [−180, 180]. Analogously, the four corners of c have coordinates c1, c2, c3 and

c4. To make calculations easier and faster, the spherical coordinates can be transformed to

the Cartesian coordinates using the mapping Φ : R2 7→ R3 with

Φ(ϕ, λ) =

R · cosϕ sinλ

R · cosϕ cosλ

R · sinϕ

 ,where R is the radius of the Earth. (3.1)

2The term representative depth was chosen because together with the centre of the cell, it represents
the position of the cell in simulations.

22

Note that the depths of the cells are disregarded in these calculations. Using the

mapping, the Cartesian coordinates are obtained as

Ci = Φ(ci), for i ∈ {M, 1, 2, 3, 4}. (3.2)

To make the notation clear, all the properties of a single cell in the grid are listed in

the Table 3.1.

Parameter Value

cM ∈ R2 spherical coordinates of the middle of the cell

c1, ..., c4 ∈ R2 spherical coordinates of the corners of the cell

CM ∈ R3 Cartesian coordinates of the middle of the cell

C1, ...,C4 ∈ R3 Cartesian coordinates of the corners of the cell

cD ∈ R maximum depth of the cell

cD ∈ R minimum depth of the cell

cD ∈ R representative depth of the cell

Table 3.1: Overview of the parameters of a cell c.

3.2 Cost function

The choice of the cost function is a crucial step in optimization tasks. In this case,

travelled distance, risk of detection and elapsed time will be taken into account. Unlike

most cases, in this one, the cost of travel does not only depend on the starting and ending

cell, but also on all the cells that are along the way. That is why an algorithm for creating

the list of cells on given path is introduced.

3.2.1 Creating list of cells on given path

In this algorithm, we will use the fact that the geodesic between two points on a

sphere is a segment of the great circle of that sphere. A great circle is an intersection of the

sphere and any plane that goes through the centre of the sphere. The method is described

in pseudocode in the Algorithm 13.

The input of this algorithm is a grid Gs, a starting cell cS ∈ Gs, and an ending cell

cE ∈ Gs. Then, the plane p that defines the corresponding great circle goes through points

CM
S and CM

E . The centre of Earth, which is also on the plane p, has coordinates (0, 0, 0).

Therefore, plane p can be defined by its normalised normal vector n. The first argument of

the function (i.e. the grid) can be omitted if it is clear in the context to simplify notation.

The distance of a point CM
i from the plane p equals |n ·CM

i |. If the vertical shape of

a cell is approximated to be a isosceles trapezoid, all the cells that are on the path from

cS to cE must have the distance from their middle point to p lower than s
(√

5
2 + ε

)
. The

value of ε is added so that no cells are lost due to precision errors. If the previous condition

was required only, it would be satisfied by any cell on the whole great circle around the

Earth.

23

However, we are interested only in the segment between cS and cE , thus function

check(ci, cS , cE) is introduced. The function calculates the northernmost and southernmost

latitudes ϕNorth, ϕSouth along the path by the get latitude bounds of trajectory(cS , cE)

function, for example iteratively by sampling the trajectory. It also creates longitude bounds

that are given directly by the middle points of cS and cE .

Algorithm 13: list(Gs, cS , cE)

n←
CM
S ×CM

E∥∥CM
S ×CM

E

∥∥
2

;

Xapprox ←

{
c ∈ Gs

∣∣∣∣∣|n ·CM
i | < s

(√
5

2
+ ε

)
∧ check(ci, cS , cE)

}
;

Xdepths ←

{
c ∈ Xapprox

∣∣∣∣∣cD ≤ d(c, cS) · cDS + d(c, cE) · cDE
d(c, cS) + d(c, cE)

< cD

}
;

Xexact ← {c ∈ Xdepths| max
i=1,...4

sign(n ·Ci) = 1 ∧ min
i=1,...4

sign(n ·Ci) = −1};

L ← ∅;
for each cell c in Xexact do

I1, I2 ← get intersection points(edges(c),n);

if c = cS or c = cE then

L ← L ∪

{(
c,

d(I1, I2)

2

)}
;

else
L ← L ∪ {(c,d(I1, I2))};

end

end

return L;

Algorithm 14: check(ci, cS , cE)

ϕNorth, ϕSouth ← get latitude bounds of trajectory(cMS , c
M
E);

λEast ← max longitude(cMS , c
M
E);

λWest ← min longitude(cMS , c
M
E);

ϕi ← get latitude(cMi);

λi ← get longitude(cMi);

if ϕi /∈ [ϕSouth, ϕNorth] then
return false;

end

if the shortest path between cS and cE crosses the Date Line then
return λi ∈ [λWest, λEast];

else
return (λi ≥ λEast or λi ≤ λWest);

end

In the first step, only an approximate set Xapprox is created to quickly filter the cells

that are definitely not on the path.

The depth limits of cells were not reflected into the Cartesian coordinates, meaning

that if a cell is present in Xapprox, then all the cells that only differ by depth are also

24

present. Filtering depth is straightforward, since it is assumed that the depth changes

linearly during the voyage. Define the starting depth cDS as the representative depth of cS
and the ending depth cDE as the representative depth of cE . Also define d(ci, cj) as the

spherical distance from cell ci to cj . This is how the Xapprox is filtered from superfluous

cells into the Xdepths set.

Finally, the cells can be exactly filtered from the Xdepths set by determining in which

half-space the corners of the cells lie. If all the corners of a cell are in the same half-space,

the cell is not intersected by the plane and therefore not on the path. Otherwise, the cell

is approximated to a convex quadrilateral, the edges of the cell that cross the plane p are

determined and the exact length of the intersection is calculated as the distance between

the two intersection points. The reason why this procedure was not applied on the full set

Gs is that there could be a lot of cells and the approximate filtering performs only one dot

product per cell, unlike the exact filtering that needs four dot products.

Now, the set of cells that are along the path is known, but it is also necessary

to assign the length of intersection to each cell using get intersection points(edges(c),n)

function. The computation is easy, since we only need to find the intersections of the edges

of the cell and the plane going through the origin point (0,0,0) defined by its normal vector

n. The edges of a cell are defined by the corners of the cell

edges(c) = {(C1,C2), (C2,C3), (C3,C4), (C4,C1)}. (3.3)

The intersection points are then calculated as an intersection of a plane and a line

segment. The corresponding distance travelled in the cell is approximated as the distance

of the two intersection points. The only exceptions are the two cells cS and cE . Their

corresponding distances need to be halved, because the starting and ending point is in the

middle of these cells, not at the boundary.

The approximations that were made across the algorithm are precise enough, even

with large cells with size s=100 km, the error in length is lower than 3 %.

The output of this algorithm is the set L consisting of the cells from Xexact and

corresponding lengths di, distances travelled in cells ci ∈ Xexact on the path from cS to cE .

As mentioned earlier, the grid argument can be omitted to simplify notation if the grid is

clearly known, that is for instance

list(cS , cE) = {(cS , dS), ..., (cE , dE)}. (3.4)

3.2.2 Time windows

Before the form of the cost function is introduced, it is important to mention that our

implementation is able to handle changing environment, i.e. the risk of detection changes

in time. It is modelled discretely by dividing the whole execution time into multiple time

windows 0, 1, ..., E. Each time window (TW) has the same duration.

25

3.2.3 Form of the cost function

The input of the cost function consists of two cells or a sequence of cells with specified

time windows in which the individual distances are crossed. Clearly, the time windows have

to be in non-decreasing order.

For instance, the cost of voyage from cell c1 to c2 in time window t1 followed by

proceeding to cell c3 in time window t2 will be denoted as cost(c1
t1−→ c2

t2−→ c3) given the

condition that t1 ≤ t2. These requirements lead to the redefinition

cost : G ×M× G ×M× · · · × G 7→ R≥0, where M = {0, ..., E}. (3.5)

The value of the cost function is determined by 3 criteria: travelled distance, risk of

detection and elapsed time. The travelled distance is defined by the d function

d : G × G 7→ R≥0 (3.6)

that for two cells in a grid returns their distance. In detail, it is the spheric distance

calculated by the Haversine formula, as explained in Korn and Korn (1967).

Next, p function represents the risk of being detected along the path in given time.

The input for this function is a set of cells that are on the path, as defined in 3.2.1 and the

time window in which the path is executed, formally

p : 2G×R
≥0 × {0, 1, ..., E} 7→ R≥0. (3.7)

The particular definition of this function is not straightforward and will be further

investigated in the Section 3.2.4.

The last component is the time window in which the voyage is finished. This task is

an instance of multi-objective optimization. To allow comparing, the weighted sum method

is used, as mentioned in Grodzevich and Romanko (2006). The cost of travel is calculated

as a conic combination3 of multiple values. Weighs wi represent the importance of each

component. Note that the normalization constraint
∑3

i=1wi = 1 is not necessary, because

positive linear transformation does not change preferences.

With this set up, the form of the cost function can be expressed for a path between

two cells cS and cE executed in the time window t, as

cost(cS
t−→ cE) = w1 · d(cS , cE) + w2 · p(list(cS , cE), t) + w3 · t. (3.8)

For longer inputs, it is needed to know the p function. The possible outcomes are

presented in equations 3.14 and 3.17.

3Conic combination is any linear combination with non-negative coefficients

26

3.2.4 Risk of detection

To concretely define the p function, we need to assume that a function

RD : G × {0, ..., E} 7→ R≥0 (3.9)

is available. This function assigns a non-negative value representing the risk of detection

to each cell in the grid in given time.

Additionally, a function

dmax : G 7→ R≥0 (3.10)

is needed. It returns the length of the longest straight line segment across a cell. The cells

have approximately the shape of isosceles trapezoids, so the function returns either the

length of a diagonal or the length of one of its sides, depending on which value is the

largest. The value is not the same for all cells, so it is necessary to define it as a function.

If an object crosses along the longest straight line segment across a cell c ∈ G in time

t, then the risk of this object in this cell is RD(c, t). That does not give us any information

about the risk if the object crossed the cell in length d < dmax(c). This leads to another

function pm(c, t, d) that returns the risk of detection if an object crosses only a distance d

in a cell c in specified time window t. This function is formally defined as

pm : G × {0, ..., E} × R≥0 7→ R≥0. (3.11)

There will be the following constraints on the pm function:

• The value of the function grows with increasing RD(c, t) or d.

• ∀t ∈ {0, ..., E} ∀c ∈ G : lim
d→d−max(c)

pm(c, t, d) = RD(c, t)

This states that as the crossed distance approaches the maximal distance, the value

of pm converges to the value of RD.

• ∀t ∈ {0, ..., E} ∀c ∈ G : pm(c, t, 0) = 0

This expresses the fact that if the cell was not actually crossed (distance d = 0), the

risk equals zero.

• ∀t ∈ {0, ..., E} ∀c ∈ G : RD(c,t) = 0 =⇒ ∀d ∈ [0, dmax(c)] : pm(c, t, d) = 0

If the risk in a cell equals zero, the value of pm will also be zero.

• The total risk of detection on path {(c, d)} (path with one cell) should be equal to the

risk of detection on path consisting of N cells {(c1, dN), ..., (cN ,
d
N)} if

RD(c1, t) = ... = RD(cN , t) = RD(c, t). This condition ensures that crossing through

space with uniform risk of detection does not depend on the amount of cells crossed,

but only on the overall distance.

In accordance with these constraints, two admissible approaches are introduced.

27

Probabilistic approach

First, exact probabilistic approach is applied. It is assumed that the detections in

individual cells are independent events and the risk of detection is equal to the probability

of being at least once detected. The function p defined below will be referred to as detection

probability. In this case, the range of RD values must be limited to interval [0, 1].

pm(c, t, d) = 1− (1− RD(c, t))
d

dmax(c) (3.12)

p ({(c1, d1), ..., (cN , dN)}, t) = 1−
N∏
i=1

(1− pm(ci, t, di)) = 1−
N∏
i=1

(1− RD(ci, t))
di

dmax(ci)

(3.13)

That gives the corresponding cost function:

cost(c1
t1−→ c2

t2−→ c3
t3−→ . . .

tN−1−−−→ cN
tN−→ cN+1) =

w1 ·
N∑
i=1

d(ci, ci+1) + w2 ·

(
1−

N∏
i=1

(1− p(list(ci, ci+1), ti))

)
+ w3 · tN

(3.14)

Linear approach

Another approach is not to compute the exact probabilities, but only linearly scale

and add the risk values, creating a detection score.

pm(c, t, d) =
d

dmax(c)
· RD(c, t) (3.15)

p ({(c1, d1), ..., (cN , dN)}, t) =
N∑
i=1

pm(ci, t, di) =
N∑
i=1

di
dmax(ci)

· RD(ci, t) (3.16)

This approach results in the following form of the cost function:

cost(c1
t1−→ c2

t2−→ c3
t3−→ . . .

tN−1−−−→ cN
tN−→ cN+1) =

w1 ·
N∑
i=1

d(ci, ci+1) + w2 ·
N∑
i=1

p(list(ci, ci+1), ti) + w3 · tN
(3.17)

Comparison of approaches

In this section, the values taken from the linear approach will be referred to as

detection score and the values from probabilistic approach as detection probability.

For small values of RD(c, t), the values of pm will be almost similar in both ap-

proaches. However, with higher values of RD(c, t), the difference increases, as shown in the

Figure 3.3.

28

(a) RD(c, t) = 0.1 (b) RD(c, t) = 0.5

Figure 3.3: Comparison of the suggested pm functions.

More important are the values of p, as these are used in the cost function. The

probability of detection has 1 as its upper bound, therefore if the probabilities of detection

in individual cells are large, the value of p will converge to 1 with increasing length of path

and then, the risk of detection will not affect the cost function, as it remains constant. This

is a huge disadvantage of the probabilistic approach. In the same conditions, detection

score will still increase, because it is not bounded and even for large RD(c, t), it can

still be scaled with the travelled distance. This phenomenon is shown in the Figure 3.4,

where the values of p({(c1, dmax), ..., (cN , dmax)}) are plotted for variable N and constant

RD(c1, t) = ... = RD(cN , t) = RD(c, t).

All in all, with small RD values, the results are about the same and with larger RD

values, the detection probability may converge to 1 quickly and then become a constant in

the cost function. This is why the detection score is used in our implementation.

In addition, the detection score can be further generalised. There is no need to

estimate the risk of detection RD(c, t) as a probability in the [0, 1] range. It is sufficient to

do it only proportionally on the set of real non-negative numbers. For example, the risk

in the cell c1 is k-times larger than in c2. Then, RD(c1, t) = k · v and RD(c2, t) = v are

chosen correctly for any positive v. But the w2 weight, as used in the Equation 3.17, needs

to be chosen properly with respect to the actual RD values. Lastly, with linear approach

comes another advantage, the values can not only represent detection risk, but also any

other inconvenient influences that may deter an object from entering a space.

3.3 Problem definition

Given the defined terms above, the whole task can be formalized as looking for a

sequence of cells c1, . . . , cN+1 and time windows t1, . . . , tN such that the value of cost(c1
t1−→

c2
t2−→ . . .

tN−→ cN+1) is minimised, t1 ≤ t2 ≤ · · · ≤ tN and the constraints on movement are

satisfied.

29

(a) RD(c, t) = 0.01

(b) RD(c, t) = 0.1

(c) RD(c, t) = 0.5

Figure 3.4: Comparison of the suggested functions p for variable N .

30

3.3.1 Constraints on movement

Constraints originate from the section 1.2. The first limitation is caused by the in-

ability of the submarine to stay submerged indefinitely. As mentioned in 3.2.2, the time is

discretised into time windows, therefore the maximum submerged time is also defined by

the amount of time windows that the submarine can spend below surface. That results in

the condition 3.18, where the maximum time below surface is denoted as tsubmerged. The

condition expresses the fact that for all subsequences of the path in which the submarine

is submerged continuously the overall time spent below surface may not be longer than

tsubmerged. If tsubmerged = 0, then the vessel can move only on surface.

∀ subsequences ci
ti−→ . . .

tj−1−−→ cj of the original path c1
t1−→ c2

t2−→ . . .
tN−→ cN+1 :

cDi , . . . , c
D
j > 0 =⇒ tj−1 − ti < tsubmerged

(3.18)

Next, the vessels are also limited by their maximal speed s. It means that in each

time window, the overall travelled distance is limited to s ·D, where D is the duration of

a TW.

∀ subsequences ci
t−→ . . .

t−→ cj of the original path c1
t1−→ c2

t2−→ . . .
tN−→ cN+1 :

j−1∑
k=i

d(ck, ck+1) ≤ s ·D
(3.19)

Lastly, it is also necessary to ensure that on each path between two cells, the sub-

marine will not for example hit a seamount4. This means that along the route, the actual

depth of the submarine may not be higher than the local depth of the sea. This condition

is checked by sampling the points along the path and ensuring that the vessel does not

crash.

3.4 Algorithms

The task defined above can be solved by slightly altering the RRT* algorithm intro-

duced in 2.1.2. In the altered version, each vertex of the tree will not only be defined by its

position in the state space, but also by the arrival time to this position. Thus, the function

add vertex(p, t) accepts two arguments, where the first one is the position p and the second

one is the time frame t in which the position is reached. The get random state() function

returns a random cell from the grid chosen with uniform distribution.

To clearly define the usage of the cost function in this situation, if a path of length

N consists of positions p1, . . . , pN with assigned time windows t1, . . . , tN , the cost of the

path equals cost(p1
t2−→ p2

t3−→ . . .
tN−1−−−→ pN−1

tN−→ pN).

4A mountain on the bottom of the ocean that does not reach the surface.

31

Figure 3.5: A tree that samples the Eastern Pacific. The meaning of the edge colours is
described in the Section 4.3.

Four modifications of the RRT* are presented, Gradually Extending RRT* (GERRT*),

RRT* with Time as Dimension (RRT*TD) and the corresponding balanced versions. The

modifications share the same functions with RRT*, even the whole interface of extending

and optimizing the tree is the same, except the additional time information. The common

part of the algorithm is extracted in the Algorithm 15 that describes the process of insert-

ing a new node to the tree based on the randomly sampled vertex prandom with arrival in

the TW t.

Algorithm 15: T.extend(prandom, t, ε, d)

pnear ← T.find nearest(prandom);

pnew ← steer(pnear, prandom, ε);

if edge between pnew and pnear is feasible then
pbest ← T.find best parent in vicinity(pnew,pnear,d);

T.add vertex(pnew, t);

T.set parent(pnew, pbest);

T.optimize(pnew, pbest, d);

end

Slight changes are in the semantics of the feasibility checking function and optimizing

function, since it is necessary to check the constraints mentioned in 3.3.1, especially the

fact that the time windows assigned to vertices in every path in the tree from the root to

any leaf need to establish a non-decreasing sequence.

Before the algorithms are presented, it is necessary to state that the constraint on

speed significantly influences the node generating process. Let us denote s as the speed

of the vessel and D the duration of one time window, as in the Section 3.3.1, then the

distance that can be travelled within one time window equals θ = s · D. That results in

the fact that a node that is reached in a time window t ∈ {0, . . . , E} must be closer to the

initial position pinit than (t+ 1) · θ. It means that the nodes from a time window t can be

distributed in an area proportional to (t + 1)2 · θ2 if there are no significant irregularities

32

in the obstacles. This property can be seen in the Figure 3.5, where the distant areas

are sampled more sparsely than the areas close to the initial position. That example was

generated by GERRT*.

A question arises whether the algorithms should take this fact into consideration and

generate more nodes in later time windows to cover the enlarged reachable state space.

This results in the balancing aspect. In the unbalanced versions of the algorithms, the

distribution of nodes into time windows is uniform, as opposed to the balanced versions,

where the amount of nodes in the given TW t depends on the time t and grows quadratically

with increasing t to compensate for the larger sampling area.

3.4.1 Unbalanced versions

Gradually Extending RRT*

In this modification, the tree is first built as in the RRT* with time frame fixed to

0. Then, the tree is expanded with vertices from time frame 1. In this manner, the tree

is gradually extended into all the time windows. The overall amount of vertices is evenly

divided into the E + 1 time windows.

Algorithm 16: GERRT*(N , pinit, ε, d, E)

T ← empty tree();

T.add vertex(pinit, 0);

for t = 0, . . . , E do

for i = 1, . . . , b N
E+1c do

prandom ← get random state();

T.extend(prandom, t, ε, d);

end

end

return T;

RRT* with Time as Dimension

In RRT*TD, the time is viewed as another dimension and is assigned to vertices

randomly by using the rand({0, . . . , E}) function that chooses a random integer from the

given set with uniform distribution, the same as in the Section 2.1.3.

Algorithm 17: RRT*TD(N , pinit, ε, d, E)

T ← empty tree();

T.add vertex(pinit, 0);

for i = 1, . . . , N do
prandom ← get random state();

t← rand({0, . . . , E});
T.extend(prandom, t, ε, d);

end

return T;

33

3.4.2 Balanced versions

Balanced Gradually Extending RRT*

This version is the same as GERRT*, but the total amount N of vertices is not

evenly divided into the time windows, but has quadratic distribution. That is, in the time

window t ∈ {0, . . . , E}, the amount of nodes is directly proportional to (t+ 1)2 and can be

exactly estimated as

N(t) =

⌊
N

(t+ 1)2∑E
t=0 (t+ 1)2

⌋
. (3.20)

Algorithm 18: BGERRT*(N , pinit, ε, d, E)

for t = 0, . . . , E do

N(t) ←

⌊
N

(t+ 1)2∑E
t=0 (t+ 1)2

⌋
;

end

T ← empty tree();

T.add vertex(pinit, 0);

for t = 0, . . . , E do

for i = 1, . . . ,N(t) do
prandom ← get random state();

T.extend(prandom, t, ε, d);

end

end

return T;

Balanced RRT* with Time as Dimension

Again, the time windows are chosen randomly in BRRT*TD, the distribution is not

uniform, but instead follows the discrete distribution defined as

P(t) =
(t+ 1)2∑E
t=0 (t+ 1)2

for t ∈ {0, . . . , E}. (3.21)

34

Algorithm 19: BRRT*TD(N , pinit, ε, d, E)

for t = 0, . . . , E do

P(t) ← (t+ 1)2∑E
t=0 (t+ 1)2

;

end

T ← empty tree();

T.add vertex(pinit, 0);

for i = 1, . . . , N do
prandom ← get random state();

t← choose from {0, . . . , E} with distribution P(·);
T.extend(prandom, t, ε, d);

end

return T;

3.4.3 Summary of the algorithms

To summarize, the GE versions generate the nodes in earlier time windows first and

after that, the vertices in further time windows are added. This is in contrast with the TD

approach, in which the order of the time windows is mixed and generated randomly as well

as the position of the vertices.

In the unbalanced versions, there is the same amount of vertices in each time window,

as opposed to the balanced versions, where the vertex count in a time window is not

uniform. Note that the actual distribution into time windows in the TD versions depends

on random choice and is therefore not exact.

35

Chapter 4

Implementation

In this chapter, we first describe the functioning of the already implemented BAN-

DIT simulation framework in the Section 4.1 and a newly created model of submarine is

introduced in the Section 4.1.2 as an instance of an agent behaviour model. Then, the

input parameters of the grid and path planning are described in detail in the Section 4.2

together with a discussion on their significance and meaning. The forms of the output with

examples are described in the Section 4.3. Finally, the usage of the implemented algorithm

is explained in 4.4.

4.1 BANDIT

BANDIT is an agent-oriented time-stepped simulation framework that was created

to model maritime piracy and smuggling. As stated in Hrstka et al. (2015), it might have

been one of the first maritime microscopic simulations that cover the individual behaviour

and interactions between vessels, since the previous models were located only in limited

areas or could not feature heterogeneous agents.

Simulations in this model are run in three steps. First, the actual scenarios are

either randomly sampled from given parameter distributions or could be directly set as the

input. Then, the scenarios are executed while logging important events and trajectories of

the agents. Finally, the events are post-processed and output data are created.

The process of simulation execution in BANDIT interface uses two main compo-

nents, the environment and the agents. In the environment, the state variables are stored

and changed by the commands from the agents. On the other hand, the agents obtain

information concerning their surroundings from the environment. The connection between

the agents and the environment is mediated by the controller interface.

4.1.1 Agent Behaviour Model

The agent behaviour model is based on behaviour state machines (BSM) that are

similar to hierarchical finite-state machines (hFSM). Thus, to introduce the BSM, we start

with explaining finite-state machines (FSM).

37

The FSM is a mathematical model used to describe the functioning of a process.

At given time, a FSM is in one of its states of which there is only finite amount. It is

able to change its state through transitions that are triggered by events or stimuli from

the outside. A FSM can be defined by an oriented graph where the vertices represent the

states and the oriented edges represent the transitions. The output of a FSM can either be

produced by the transition in the case of a Mealy machine or by the the individual states,

as in Moore machines.

Like FSM, the BSM can be defined by a graph too, but unlike FSM, it features more

complex states, i.e., the transition conditions (called guards) can be arbitrarily complicated.

And if a transition guard passes, meaning that the condition is satisfied, it switches the

state and can produce some output. Otherwise, the internal response guards are evaluated

and if one of them is passed, it can also produce an output without switching the state.

The hierarchical property comes into play when no guard, either transition or internal

response, is passed. Then, the trigger event is recursively applied on the BSM that is

contained in the current state, if it is there. It is also possible to produce additional outputs

when a state is exited and another entered. The functioning is described in more detail in

Hrstka et al. (2015). On the outside, the BSM functions as a black box that is given inputs

and reacts to them by creating outputs, it can not produce any output without a trigger

from the outside.

4.1.2 The model of a submarine

In our case, the submarine in the simulation executes a voyage that is planned by one

of the algorithms in 3.4. That is a sequence of cells c1, . . . , cN and time windows t2, . . . , tN
meaning that a cell ci is reached in time window ti.

1 It may be beneficial for the submarine

to not only drive straight to a target, but to wait until for example some kind of risk

disappears and then continue with the voyage.

Thus, in the implementation, the sequence of cells and time windows is converted to

a sequence of locations p1, . . . , pK and boolean values b1, . . . , bK−1. The locations pi contain

not only the coordinates, but also the depth information. This can be easily interpreted

by stating that the agent sails through the locations one by one and when it reaches the

location pi and bi is true, then it waits until the next time window to continue to the next

position. Otherwise, if bi is false, the agent continues to the next position pi+1. The last

value bK is not necessary, because when the agent reaches pK , it finishes its route and does

not continue anyway. Also note one implementation detail, the new sequence of locations

can be longer, i.e. K ≥ N , because if the agent needs to wait at one place for more time

windows, it could not be described by the single boolean value. Thus, the situation is

solved by repeating the same location in the sequence and setting multiple corresponding

bi values to true. This results in the desired behaviour in which the agent stays at one place

for multiple time windows.

The behaviour defined above is implemented in the simulation by three states, as seen

in the Figure 4.1. The implementation is not straightforward, since the agents in BANDIT

1Let us emphasise that the time window t1 was not mentioned, because the agent is placed to c1 in the
time window 0 even if it would not move until the next time window.

38

Figure 4.1: The state diagram of a submarine, as used in the simulation.

simulation can react only to events or alarms. Therefore, the submarine agent switches

its state by alarms that it arranges itself. The same approach was used in the simulation

framework to create the tarping behaviour2.

The agent starts at the position p1, is in the sail state and sets an alarm to end

waiting in time D, where D is the duration of one time window.

The path is then executed iteratively. The agent is at location pi and if bi is not true,

the agent continues to pi+1. Otherwise, if bi holds, then the agent switches to the wait

state, where it stays until the waiting-end alarm returns it to the sail state and the agent

continues to pi+1. Right after the waiting ends, a new waiting-end alarm is set up to the

time t+D, where t is the current time. This process is iteratively repeated until the final

location pK is reached and the agent switches into the in destination state.

4.2 Inputs of the path planning process

The inputs and settings of the algorithm can be roughly divided into two groups.

The first group concerns the properties of the grid and the second contains the settings of

the algorithms presented in the Section 3.4.

4.2.1 Grid parameters

The parameters of the grid were already introduced in the Section 3.1.1. Now the

meaning of the parameters is explained in practice and we also discuss the choice of values.

The position of the area has clear meaning that does not need to be explained.

However, it may be beneficial not to limit the planning area to a tight vicinity of the

connecting line of the start and target locations, because the optimal paths may be located

outside of this area, for instance to avoid regions with high risk of detection.

The size s of the cells, as illustrated in the Figure 3.2a, determines the particularity

of the grid. It is usually specified in kilometres and the main disadvantage caused by too

many small cells would be the overall slowdown in the planning phase, as further elaborated

2In the tarping model, a go-fast boat travels at night and stops to be carried by the currents without
interference during the day. The state is switched by alarms at sunrise and sunset that are scheduled by
the agent itself.

39

in 5.2.1. Of course, the amount of cells is also limited by the memory of the computer

that runs the simulation. For example, a grid that covers the whole Pacific ocean with

s = 100 km consists of 32270 cells in the surface layer. Having more layers would multiply

the overall amount of cells.

The depth interval ∆d determines the vertical size of the cells, as illustrated in the

Figure 3.2b. It should be chosen large enough to provide significant physical difference

in characteristics. That means, appropriate amount of layers is in the order of ones, not

even tens. That results in the values of ∆d in tens of metres. For example, it is important

to think of the fact that only the first layer is considered to be on the surface, as it is

further explained below in the paragraphs about detectors. Too dense depth sampling

would invalidate this idea from the physical point of view.

The depth m of the deepest layer should be chosen with accordance to the physical

abilities of the modelled submarine and current tactical situation. This means that in

peacetime, submarines are allowed to maximally dive in the depths equal approximately

to the half of their design depth.

To properly create the grid, we also need the RD function defined in 3.2.4. For user

convenience, the risk of detection does not need to be estimated for each cell separately,

but it is suitable to introduce detectors that automatically set up these values for cells in

defined areas.

In the enclosed implementation, there are two basic types of detectors, a uniform

detector and a Gaussian detector. The uniform detector is defined by its centre c, radius

r and risk value v and increases the risk of detection by v in each cell that is closer to c

than the distance r.

The Gaussian detector is defined by its centre c, standard deviation σ and the value

at centre v. Then, the risk of detection in a cell that is in the distance d from c is increased

by the value I defined as

I = v · exp

(
− d2

2σ2

)
. (4.1)

To improve the versatility of the model, the depth also influences the risk of detection.

There are three options that model the effects.

• First, there does not need to be any depth influence and the risk only depends on

the horizontal distance from the detector.

• Second, the detector is active only on the surface layer and can not detect anything

submerged.

• Third, the risk of detection exponentially decreases with increasing depth of the

cells. The parameters of the decrease are defined by one depth and corresponding

percentage decrease, the other values are derived from these data.

40

Each detector is also assigned the interval of time windows in which it is active,

allowing time-variant environment. Outside the interval, it does not influence the risk of

detection.

The total risk of detection of a cell in given time window is defined as a sum of all the

risks given by the currently active Gaussian and uniform detectors. If no detectors reach

the cell in the defined time window, its RD value is set to 0. This can be done due to the

fact that we chose the linear approach that was introduced and justified in the Section

3.2.4.

Lastly, we also need a depth information provider to properly create the grid accord-

ing to the real world situation. For this, the ETOPO2v2 grid3 with depth data was used

and is necessary to generate the grid.

4.2.2 Planning algorithm parameters

In this section, the meaning and importance of the input parameters previously

mentioned in the Sections 2.1.2, 3.3.1 and 3.4 is discussed.

The total amount of vertices N should be in the order of hundreds or low thousands,

unless really short paths are planned. If the path goes through complicated environment

with a lot of obstacles, it is advisable that more vertices are generated in order to at

least create a feasible path. The parameter N should also be larger if there are more time

windows. The computation time grows asymptotically quadratically with N due to the

tree optimization processes.

The end time window E with the duration of a time window D together define the

total length of the simulation as (E + 1)D (as defined in the Section 3.2.2, there are time

windows {0, . . . , E}). That is the time that the submarine has to finish the voyage. In the

current implementation, there should not be too much time windows, for instance five,

because the overall amount of vertices N is divided into the time windows and large E

would cause the state space to be only sparsely sampled. And as described above, N can

not be increased without additional demands on the computation time.

The issue concerning the tightly bounded amount of time windows can be solved in

the same way as in ABC, in the Section 2.1.3. It means that the whole voyage will not be

planned at once, but only piecewise for the nearest future, evaluated and then the time

windows will be shifted to predict further based on the previous result.

The steering distance ε, as introduced in the Algorithm 1, has definitely to be larger

than s to allow the algorithm to function and properly expand the nodes. It is generally

recommendable to choose it as a low multiple of s.

The optimizing radius d with the amount of nodes N are the parameters that most

directly influence the quality of the solution. The value of d must be chosen larger than ε,

for example a small multiple, i.e. 5ε. If the value was chosen to be too large, for instance

equal to the circumference of the Earth, the algorithm will be unnecessarily slowed down

and still may not produce the optimal solution, because it is based on random sampling.

3Specifically ETOPO2v2c f4 MSB.flt that was taken from https://www.ngdc.noaa.gov/mgg/global/

relief/ETOPO2/ETOPO2v2-2006/ETOPO2v2c/raw_binary/

41

https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ETOPO2v2c/raw_binary/
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ETOPO2v2c/raw_binary/

The start and target points of the voyage pinit and ptarget are given as latitude and

longitude coordinates. The submarine always starts and finishes on surface in the cells that

are nearest to the given coordinates.

These were the parameters of the planning algorithm in general, but additional

domain-specific knowledge concerning the particular vessel is needed and listed below.

The next parameters are the preferences of the captain of the vessel, previously

defined as w1, w2 and w3 in the Section 3.2.3. These non-negative values are the weights of

distance, risk of detection and time spent by the voyage in this specific order. The numerical

value of distance is given in kilometres and the time as a time window. The values of RD

were broadly discussed in the Section 3.2.4. If any of these weights are zero, it means that

the particular factor does not matter to the planning.

If we focus on the first two components, the values mean that a submarine would

consider 1 kilometre detour and increasing RD by w1
w2

equally costly (if w2 6= 0). This

defines how long detour the vessel is willing to make to avoid detection. The particular

choice of w2 also depends on the values that the detectors have and the size of cells s,

meaning that with large cells, the RD values or w2 value should be scaled accordingly to

keep the intended behaviour.

The weight of time w3 defines how much the vessel prefers to wait on its path. For

example, it may be favourable to wait until a detector disappears in the next time window

rather than to make a detour or cross an area with high RD. Nevertheless, the absolute

value of w3 should be significantly higher than w1 in order to scale between thousands

(kilometres, length of the path) and small ones (time windows).

The time tsubmerged that defines how long the vessel can stay submerged is specified

as some amount of time windows. This parameter is set according to the design of the

vessel. If tsubmerged = 0, then the vessel can not submerge and the voyage is planned only

on the surface. In such case, it is recommendable to generate a grid only with the surface

layer of cells to increase performance.

The last input is the distance θ that the modelled vessel can travel in one time

window, respectively in the time D. This is the real input to the algorithm, as opposed to

the speed mentioned in 3.3.1. However, the relation between the speed and the travelled

distance can be calculated simply.

4.2.3 Parameter tuning

As the reader is already aware of, there is a lot of freedom in the choice of parameters.

That might sometimes result in inappropriate settings and unsatisfactory behaviour of the

algorithm. However, there is a form of assistance to the parameter tuning. One of the

outputs of the algorithm is also a map depicting the generated tree.

This output is crucial when the planned paths do not seem high-quality. In this case,

it should be looked at to properly choose the parameters. In the parameter estimation

phase, strictly one tree should be created and according to the looks of the tree and the

found paths, the inputs can be altered in order to obtain better results. For example, if the

tree is too sparse, the amount of vertices N should be slightly increased. Or, if the paths

42

are not very smooth, it may be applicable to increase the optimization radius d while

paying attention to the fact that both these modifications result in longer computation

time. Other issues may be too low E and θ that make the planned path impossible due

to its length. When the output seems all right, the amount of generated trees should be

increased to more than one.

Before the input section is concluded, we stress once more that it is necessary to

ensure that s < ε < d. Otherwise, the algorithm fails to produce any reasonable output.

4.3 Output

After the grid is generated and parameters for planning are set, the algorithm can

be employed to generate multiple trees and pick given amount of the best paths from each

one of them. Building a tree is considerably more time consuming than picking one more

path from an already existing tree. However, choosing more than a few paths (2-3) from

one tree creates bias, because the best paths from one tree usually share common parts.

Also, umpteenth best path will likely be of poor quality and barely feasible.

The chosen paths are then simulated in the BANDIT framework and all the KML

outputs that the framework can produce are therefore obtainable. The default output from

the GUI is a heat map that aggregates the trajectories in all the paths and can also present

them in varying time. In the heat map that can be visualised in Google Earth, the colours

represent how many paths crossed the particular area and how much time the agents spent

there with red being the most visited and green the least visited space.

During the implementation of this project, we also created an output that was mainly

for the purposes of debugging, but is also quite useful when considering the quality of

the planned paths. It is a map that features the planned paths with the time windows

distinguished by colour. The intensity of RD is also shown on this map by the intensity

of the yellow colour, but without the time window distinction. It is also produced as a

secondary result of the planning together with the depiction of the generated tree, as

already mentioned in the Section 4.2.3.

An example output was created using the settings listed in B.1. All of the possible

outputs of the program are presented in this paragraph. In the Figure 4.2, there is a

screenshot of the heat map as shown by Google Earth, then in the Figure 4.3, a part of

the map with the planned paths is drawn. The yellow area represents the detector range,

the particular parts of paths finished in time window 0 are green and the parts executed

in the time window 1 are red. The last output is the Figure 4.4; there is a part of the

map depicting the first of the 3 trees. The colours of the drawn paths depend on the time

windows, the parts of paths that are executed in the time window 0 (respectively 1, 2, 3

and 4) are drawn with green colour (respectively red, blue, black and turquoise). In this

example, only the first three TWs were used.

In the examples, we can see that the agent prefers to go around the detector because

of the high w2 weight. It is also worth noting that the input setting of this particular

computation was to generate 3 trees and take 2 best paths from each of them. However,

43

Figure 4.2: The screenshot of the heat map visualised by Google Earth.

Figure 4.3: The paths drawn on a map by the debug output.

only one of the trees was able to produce two feasible trajectories, therefore there are only

4 paths in the Figure 4.3.

4.4 Use in practice

The implemented algorithm can be used for both planning or trajectory prediction of

submarines. If we would like to plan the optimal path for a particular vessel, the parameters

described in the Section 4.2 will be set up as well as the detectors and the algorithm

will offer some paths in accordance with the given preferences. This approach is fairly

straightforward.

In addition, the algorithm can be also used to predict the path of an adversary in a

similar manner. Then, the input will be the same, except that only the detectors that the

adversary is aware of are included. Another difference might be that we do not know the

whereabouts concerning the goals or targets. Thus, expert knowledge needs to be utilised

to estimate them and then let the algorithm predict possible alternatives. The assets then

could be moved in order to detect the adversary in the predicted area and time.

44

Figure 4.4: The tree from which one of the paths was taken.

45

Chapter 5

Evaluation

In this chapter, we compare the four presented algorithms in various situations and

from different aspects in the Section 5.1. Then, the best performing method is analysed in

the Section 5.2 and tested in detail in the Section 5.3.

5.1 Comparison of the algorithms

First, we would like to choose the best planning algorithm that could be used in

actual situations. We will compare the alternatives introduced in the Section 3.4 in the

terms of their time complexity and the quality of the found solutions.

5.1.1 Experiment 1

In simple input scenarios with few time windows (less than 4) and not many obstacles,

the results are usually more or less similar. That is why we created more complicated

scenarios, where the planner needs to avoid multiple detectors along the path. The scenario

used in this experiment is defined in the appendix B.2 in detail.

Algorithm
Cost of the best path (rounded, in thousands)

Average cost
1 2 3 4 5 6 7 8

RRT*TD 13.6 10.9 14.0 10.4 10.6 18.3 38.2 10.3 15.8

BRRT*TD 27.4 11.7 19.1 71.7 24.5 17.8 60.5 53.1 35.7

GERRT* 10.1 10.7 11.3 10.3 10.3 10.0 10.4 10.7 10.5

BGERRT* 10.0 11.4 10.1 19.8 10.5 10.5 11.9 10.5 11.8

Table 5.1: Comparison of the algorithms in the terms of cost of the best path.

In the Table 5.1 and the Figure 5.1, the costs of the best paths in 32 repeated

experiments with the same settings are shown. The GERRT* provided fairly stable results

and the balanced version BGERRT* only once produced a low-quality solution, that was

caused by exceptionally sparse sampling of the nodes in the target area.

47

Figure 5.1: Average costs and their standard deviations.

On the other hand, it can be seen that the quality of the paths produced by the TD

variants fluctuates substantially, even though these algorithms can provide a good solution,

for example the fourth experiment with RRT*TD or the second in BRRT*TD, but on the

individual results can not be relied. The reason for this is that the TD methods rely on

randomness substantially and may generate a node in a later time window even as one of

the first nodes and then the node is forced to be in the close vicinity of the initial node.

This results in wasting many nodes in the surroundings of the initial node, even though

they could be positioned further if they were produced later.

The GE methods do not suffer from this disadvantage because in GE methods, when

the nodes from a time window t are generated, the nodes in all the previous time windows

had already been created. Thus, the nodes can connect to any of the previous nodes and

actually expand in the full radius (t+ 1) · θ, as explained in 3.4.

Algorithm Average time (seconds)

RRT*TD 44.7

BRRT*TD 40.7

GERRT* 87.1

BGERRT* 35.2

Table 5.2: Comparison of the algorithms in the terms of execution time.

In the same settings B.2, the time of computation for each method was measured1

with the results listed in the Table 5.2. The time needed for the execution of the GERRT*

method exceeds the other times approximately twice. Even though BGERRT* exhibited a

fluctuation in the quality of the results, it has appreciably lower execution time. To compare

the balanced and unbalanced versions fairly, the number of generated vertices will be taken

into consideration in order to equalize the computation time in the next experiment.

1Experiments were performed on a computer with Intel Core i5-3210M CPU and 8 GB RAM.

48

5.1.2 Experiment 2

The results in the Tables 5.3 and 5.4 were generated with the settings B.3 and

were run 6 times for each method and node count. A slight alteration of the previous

settings was made by prolonging the active time of the detectors. This change however

increases the requirements on the result significantly because the trajectory has to avoid

multiple detectors that are in the way for the last 3 time windows. To offer more freedom

of movement to the planner, the maximal travelled distance θ in one time window was

increased.

Algorithm N
Costs in thousands Average cost

1 2 3 4 5 6 (thousands)

RRT*TD 3000 15.51 15.52 15.58 15.50 15.58 15.57 15.54

RRT*TD 3750 15.54 15.68 15.58 15.52 15.53 15.52 15.56

BRRT*TD 3000 15.52 17.45 15.86 16.93 15.86 17.59 16.54

GERRT* 2200 15.64 15.68 15.53 15.55 16.05 15.85 15.72

GERRT* 3000 15.48 15.51 15.52 15.39 15.47 15.43 15.47

BGERRT* 3000 15.52 15.61 16.38 15.58 15.66 15.61 15.73

BGERRT* 3800 15.54 15.51 15.60 16.11 15.56 15.56 15.65

Table 5.3: Comparison of the best cost of the methods with varying node count.

Algorithm N Average time (seconds)

RRT*TD 3000 129.7

RRT*TD 3750 194.6

BRRT*TD 3000 113.0

GERRT* 2200 109.9

GERRT* 3000 193.1

BGERRT* 3000 110.0

BGERRT* 3800 192.6

Table 5.4: Comparison of the execution time of the methods with varying node count.

If we first look at the results with the same node count N = 3000 in the Table 5.3 or

in the Figure 5.2, GERRT* provided more consistent costs than BGERRT* that on average

had higher cost values and again produced a distinctive outlier with obviously sub-optimal

value in the third run. Only the worst value produced by the unbalanced version (15522.5

in the third run) is subtly higher than the best value of the balanced version (15518.9 in the

first run). Therefore we can conclude that with the same amount of nodes, the unbalanced

GERRT* performs better in the terms of the quality of solution than BGERRT* under

the same node count.

Now, we will discuss the TD versions. The costs of the best paths provided by the

BRRT*TD again fluctuated as in the previous settings and this method is therefore the

least credible. On the other hand, thanks to the increased amount of nodes in this scenario,

RRT*TD did not produce any outliers this time and offered only slightly worse solutions

than GERRT* with the same node count N = 3000.

49

Figure 5.2: Average cost values with standard deviations in the second experiment.

The paths that were generated are shown in the Figure 5.3 for each method. To

properly understand the results, we remind that in these settings, the four detectors are

active from the time window 2 to the final time window 4. The parts of the paths that are

executed in the time window 0 (respectively 1, 2, 3 and 4) are drawn with green colour

(respectively red, blue, black and turquoise). The weight of risk of detection was set high,

therefore the paths avoid crossing the detectors, except for the green and red parts, where

they are not active yet. The distance at which the detectors are detoured is found as the

balance between the travelled distance and detection risk. If the weight of detection risk

in the cost function was set lower, the paths would be shorter and more eastward. All

algorithms provided paths that manage to get across the uniform detectors before they

become active.

At first sight, the balanced methods do not provide consistent results, especially in

the case of BRRT*TD. The most stable method is GERRT* that even managed to finish

all of the 6 paths in the time window 3, as opposed to RRT*TD that needed to use the

time window 4 to finish 3 of the 6 paths.

However, we are also interested in the runtime that is needed to obtain these results.

The execution times do not vary significantly, so there is only the average time to each

method and node count in the Table 5.4. It can be seen there that the average time needed

by the unbalanced version was considerably longer than the average time of the balanced

version when both of them were executed with N = 3000.2

That is why GERRT* was run also with N lowered to 2200, so that the average time

would be approximately the same as with BGERRT* with N = 3000. In this case, the

average costs of the methods are roughly the same.

Vice versa, the balanced version was also executed with the node count increased to

N = 3800 in order to equalize the time needed by GERRT* with N = 3000. Unlike the

previous case, the costs of the unbalanced version tended to be lower or similar.

2This behaviour of the algorithm is explained in the Section 5.2.3.

50

(a) GERRT* (b) RRT*TD

(c) BGERRT* (d) BRRT*TD

Figure 5.3: Comparison of the best paths produced by 6 repetitive runs of each algorithm.

51

Figure 5.4: Dependence of the average cost of the best path on amount of nodes N .

Similarly, the amount of nodes for RRT*TD was increased to N = 3750 to offer the

same execution time to both RRT*TD and GERRT*. We can not claim that the quality

of the best paths increased with larger N because the average cost actually slightly grew

when compared to the settings with lower N . This only confirms that the results of the

TD versions depend on chance heavily.

5.1.3 Experiment 3

In the previous result, the unbalanced versions had the best average cost of paths.

Also, those were the methods that produced the paths with the smallest costs. The fact

that the average cost of the paths produced by RRT*TD did not improve with increased

N asks for further evaluation. Therefore, both GERRT* and RRT*TD were run with the

value of N ranging from 400 to 2000 on the settings B.3. For each value, the cost of the

best path and the execution time were recorded. Each algorithm was employed three times.

The averaged results are shown in the Figures 5.4 and 5.5.

In the Figure 5.4, we see that the GERRT* stably reaches the near-optimal solution

already with 800 nodes, unlike RRT*TD that does not steadily reach the values near

optimum until N = 1600. Obviously, the GERRT* performs better or similarly for any

amount of nodes in the pictured interval. Next, another difference between the methods is

that the average cost produced by GERRT* improves almost monotonously in comparison

with the results of RRT*TD that are so unstable with low values of N that the averaging

did not manage to clear it.

On the other hand, the Figure 5.5 manifestly demonstrates that the execution time

of GERRT* is always longer than with RRT*TD. The time difference is not constant and

increases with N . This is likely the only definite advantage of RRT*TD over GERRT*.

52

Figure 5.5: The average execution time of the algorithms for given N .

5.1.4 Summary

As we have seen in the previous experiments, it is clear that GERRT* provided the

most stable and high-quality results. The balanced version, BGERRT*, might be considered

as a possible alternative if the runtime of GERRT* was too high, even though the algorithm

needs to be employed at least twice to make sure that the result was not an outlying solution

far from the optimum.

The RRT*TD also needs to be applied to a single task repeatedly to make sure

that the found solution is good. Another approach is to increase the amount of generated

nodes, that reduces the influence of randomness and might lead to a better solution. The

BRRT*TD is sometimes able to produce near-optimal solutions, but generally provides the

worst results. For all the reasons mentioned above, we will use exclusively GERRT* in the

next sections.

5.2 Time complexity

In this section, we present and discuss the influence of the input parameters on the

time required for the execution. The interest lies mainly in the amount of generated nodes

N , cell size s and optimization radius d, as the other parameters either do not directly

influence the computational time or are a priori known.

The experiments in this section will be again done using the settings B.3 with

N = 2000. In the Section 5.2.1, the cell size s varies and in the Section 5.2.2, the op-

timization radius d is changed to show the differences.

53

We started talking about this topic already in the previous part, where we showed in

the Figure 5.5 that the execution time grows approximately quadratically with the amount

of nodes N in the tree.

5.2.1 Cell size

The size of cells has a major role in the time spent to generate the tree. The reason

for this is the need to create lists of cells on given path that are filtered by the algorithm

presented in the Section 3.2.1 and further use the lists to assign a cost value to the path.

Elementary intuition suggests that the complexity should grow linearly with the

overall amount of cells in the grid. This consideration is proven to be correct by the results

shown in the Figure 5.6. We experimented with values of s between 100 and 500 kilometres,

these choices are all right with the condition s < ε = 600 kilometres and generally correct

when compared to the planned path that is approximately 10 000 kilometres long.

In the Figure 5.6a, the dependence of the runtime on cell size s is pictured. The

execution time decreases similarly as the amount of cells in the grid with increasing s in

the Figure 5.6c. This confirms our claim that the runtime in fact grows linearly with the

amount of cells in the grid. This is also plotted in the Figure 5.6b, where the dependence

is clearly linear.

Furthermore, we successfully approximated the actual amounts of cells in the Figure

5.6c by the least squares method with one basis function s−2. The approximation precisely

covered the graph on the whole interval with relative approximation error lower than

2.5 %, as shown in the Figure 5.6d. The approximation itself is not shown because on this

scale, the plot exactly overlaps the the amount of cells and can not be distinguished by

sight.

Of course, the amount of cells in the grid not only depends on the cell size s, but also

on how many layers there are. In this case, there was only one layer because the maximum

depth m was smaller than the depth sampling interval ∆d. If there were cells in L layers,

their overall amount would be approximately L-times larger than in the single-layer case

and thus the computation would be L-times slower.

In conclusion, we can say that the amount of cells M in the grid is directly pro-

portional to the number of layers L and inversely proportional to the squared cell size s2,

formally

M ∝ L

s2
. (5.1)

The runtime is then directly proportional to M .

5.2.2 The optimization radius

The last parameter that we discuss in terms of runtime is the optimization radius d.

As used in the Algorithms 3 and 4, the parameter defines the size of the region around a

newly created node in the tree, where the optimization processes are employed. The first

54

(a) The dependence of the runtime on s.

(b) The dependence of the runtime on the amount of cells in the grid.

(c) The amount of cells in the grid with
respect to their size s.

(d) The approximation error of the amount of
cells.

Figure 5.6: Evaluation of the influence of the cell size s on the execution time.

55

Figure 5.7: The average runtime for various optimization radii.

of them is looking for the parent node in the region that will provide the lowest cost value

for the new node. Secondly, after the new node is joined to the tree via an edge to the

parent node, all the other nodes in the vicinity are tested whether setting the new node as

their parent would lower their cost.

Because the area of the region equals π · d2, the computational time should grow

quadratically with d, if the nodes in the tree are sampled with uniform density around the

area. The density is not precisely uniform over the whole state space because it is usually

more sparse in the parts of the tree that are more distant from the root. Nevertheless, we

just need to look at the small individual regions with size in the order of d2, where the

density actually is locally uniform.

Our prediction is confirmed by the Figure 5.7, where the average runtime for radii

d from 650 to 1950 kilometres are shown. For each value of d, the time was measured 6

times. There were non negligible deviations in the measured durations during the testing,

therefore the standard deviation is also pictured in the plot for each value.

5.2.3 Analysis of a single execution

Until now, we dealt only with the outputs of the chosen methods, specifically the

total runtime or cost of the solution and did not look inside the method. But the timing

within the scope of one execution of the method is also interesting. To produce the output

in the Figure 5.8, the time was measured from the initialization and each node was assigned

the time when it was generated. This process was run 6 times and the results were averaged

in order to produce a smooth graph.

56

Figure 5.8: The times when individual nodes are created during one execution.

As it can be seen in the figure, the GERRT* was run with 1500 nodes in 3 time

windows (TW), thus in each TW, there were 500 nodes. Exactly at the points that corre-

spond to moving onto a next TW, there is a turn in the needed time. This is due to the

fact that a node with an assigned TW t is only able to optimize the costs of other nodes

only if they are in the same or later TW t′ ≥ t. Thus, when the first nodes are added into

a new TW, they are not able to optimize much, as opposed to the lastly generated nodes

that can optimize all the previous ones. Note that the discontinuities here are caused by

rewiring the edges in the Algorithm 4, not by finding the best parent node in the Algorithm

3, because setting parents is limited the other way around. That is, a node’s parent can be

only a node from the same or a previous TW.

However, there is another visible phenomenon in the Figure 5.8. The nodes gener-

ated in the first TW consume more than half of the computational time. The unbalanced

distribution with regard to the reachable space causes it because the nodes in the TW 0

are distributed in the radius θ, the maximal distance that can be travelled in one time

window, around the root of the tree. That gives an area with size proportional to θ2 and

node density N
3·θ2 . In the next TW, the nodes can be distributed in the radius 2 ·θ with the

density N
12·θ2 . Thus, using the knowledge from the previous section, the amount of nodes

that fit into the radius d will be approximately 4 times smaller in the second TW than in

the first one. This does not happen precisely because as explained with the Voronoi regions

in the section 2.1.1, the new nodes tend to be on the border of the already explored area

and will therefore have higher density. Another factor is that the other optimization func-

tion behaves differently and there are also other processes in the algorithm that influence

the speed. The reduction of nodes in the first TW is the reason why BGERRT* performed

faster than GERRT*.

57

5.2.4 Summary

In this section, we found out that the time complexity of the algorithm is directly

proportional to the squared amount of nodes in the tree N2, the squared optimization

radius d2 and the cell count M in the grid, formally

runtime ∝ N2 · d2 ·M (5.2)

and

runtime ∝ N2 · d2 · L
s2

. (5.3)

These findings restrict the algorithm to be run with large input values. However,

using too large values of these parameters is not recommendable even from the practical

point of view because the algorithm will produce decent solutions even with lower settings

and faster, as shown for example in the Figure 5.4.

5.3 Test scenarios

In this section, we present the results of the GERRT* algorithm on specific examples

focused on different issues, such as avoiding detection and finding the shortest possible

path.

5.3.1 Array of detectors

In this scenario, we have created a hexagonal array of uniform detectors that the

vessel needs to sail through. The exact settings of this scenario are listed in the appendix

B.5. To experiment with the influence of the weight of risk detection w2 in the cost function,

we tried four different values of it and for each one, the algorithm was run 10 times with

the results shown in the Figure 5.9.

First, the weight w2 was set to 5000, a high value. In this case, the planned paths

successfully avoid all the detectors and go around them via various detours, as it can be

seen in the Figure 5.9a.

When the weight is decreased to 100 or 10, the paths already partially cross the

areas with non-zero detection risk, especially in the case where w2 = 10, shorter path is

sometimes favoured over lower risk. The results with these settings are depicted in the

Figures 5.9b and 5.9c.

Eventually, if the risk of detection is not considered in the cost function at all with

given w2 = 0, the algorithm planned the route directly from the starting point to the end

in all 10 cases, as shown in the Figure 5.9d.

58

(a) w2 = 5000 (b) w2 = 100

(c) w2 = 10 (d) w2 = 0

Figure 5.9: The best paths in the environment for various w2 weights.

59

(a) Without the detector.

(b) With the detector.

Figure 5.10: The best paths across the Mediterranean Sea.

5.3.2 Obstacle avoidance

Until now, the algorithm was only run on the high seas with negligible obstacles in

the environment. That is why we came up with a scenario where obstacle avoidance could

be tested. The area of the planning is the Mediterranean Sea, the starting point is some

200 kilometres westwards from the Strait of Gibraltar and the target is located in the

northern part of the Adriatic Sea. The detailed settings are again listed in the appendix

B.4.

In the basic version of this scenario, there are no detectors and the algorithm was

able to reach the target in the time window 1 in all 10 planned paths. The differences

between the paths are minor, as portrayed in the Figure 5.10a.

Additionally, we challenged the algorithm with a more complicated scenario, where

a detector is placed at the Strait of Gibraltar and the preferences in the cost function are

set to primarily avoid detection. The detector is active only in the time windows 0 and 2.

In this case, the vessel always waits or moves just a little in the time window 0, sneaks

through the strait in the TW 1 and finishes the voyage in the TW 2 without any risk of

detection. If the time is disregarded, the planned paths depicted in 5.10b are similar to the

ones from the previous case.

60

(a) Aerial view of the paths and the detector. (b) Cross-section of the planned paths with high-
lighted detection areas with intensities and bor-
ders between layers.

Figure 5.11: The paths through the detector with exponentially decreasing risk.

5.3.3 Sailing under a detector

In this scenario, a submarine is trying to pass to the other side of a detector that

almost completely fills the area between the start and target locations, therefore detouring

would be too costly. However, the detector is fully effective only on surface and its efficacy

is halved every 50 metres below surface. The rational thing to do is therefore sail as deep

as possible because it is not penalized and lowers the detection risk.

The results of 10 runs in accordance with the settings B.6 are shown in the Figure

5.11a. In these settings, the grid has 3 layers with 50 meter interval and maximal depth of

100 metres. However, the aerial view gives us no information about the depths. Therefore,

the paths were cross-sected in the Figure 5.11b, where the depth of the submarine is plotted

against the progress on the path. There are also depicted the depth boundaries between

the 3 layers of cells and the areas with non-zero detection risk are highlighted with yellow.

As already noted previously, the risk equals 50 % of the surface value in the second layer

and only 25% of the surface value in the third layer. Except two trajectories, majority of

the planned paths are mostly in the deepest layer in the detection zone and surface directly

after leaving it to reach the target zone.

We also experimented with a modification of these settings, where the detector was

set to be active in the surface layer only. The results are presented in the Figure 5.12,

where all the trajectories were able to avoid any detection and successfully sail under the

detector.

5.3.4 Discussion

In the previous tests, the algorithm presented feasible results as expected, even

though the found paths could undergo some smoothing procedure that would limit their

variance and make them more direct, for instance the paths in the Figure 5.11a could be

made shorter.

61

(a) Aerial view of the paths and the detector.
(b) Cross-section of the planned paths with the
highlighted detection area and borders between
layers.

Figure 5.12: The paths under the detector that is active on surface only.

Another aspect that was not mentioned before is that when more areas have non-zero

detection risk and the weights in the cost function are set to highly avoid them, the found

paths will feature larger variance. This is caused by the stochastic nature of the planning

method. The algorithm samples the same amount of nodes, but many of these are placed

into the regions with detection risk and the high w2 weight prevents them from connecting

to other nodes and being used further due to their large cost value. That leaves us with

fewer nodes that can be actually used in the best path.

This can be seen in the Figure 5.10a, where the algorithm was able to find the

shortest path along Africa in all of the 10 runs, whereas when the detector is added, the

resulting paths vary slightly, as depicted in the Figure 5.10b. The same situation happened

in the last scenario. If the detector could not have been avoided, the paths differed more

significantly than when the detection could have been avoided completely, compare the

variances of paths in the Figures 5.11a and 5.12a.

62

Conclusion

In this thesis, we created a model of submarine that plans its path with the aim to

minimise risk of detection, travelled distance and required time. The planner is based on

random sampling, therefore the model can be used in Monte Carlo simulations.

To achieve that, we presented a gridding method that was successfully used to model

real dynamic environment. The method proved to be fairly usable and scalable throughout

the performed experiments.

Then, we defined a path planning optimization problem on the mentioned grid. Dur-

ing the formalization of the cost function, a question concerning the nature of detection

risk arose. It was found out both theoretically and in simulated tests that the detection

risk should not be represented as the probability of detection, but that a linear approach

should be used. The linearity provided decent results and additionally offered possible

generalizations and scalability.

To solve the optimization problem, we presented a modification of the RRT* al-

gorithm, GERRT*. The modified method proved to be capable of operating in limitedly

changing environment and planning trajectories in accordance with user-defined prefer-

ences. We concluded that the paths provided by the algorithm could undergo some post-

processing that could rapidly improve the found solutions in few steps.

An Agent Behaviour Model of submarine for the BANDIT simulation framework was

created and is able to successfully function within the simulation environment.

To add some ideas for possible further improvements, the time complexity of the

GERRT* algorithm restricts it from being used in scenarios with many subsequent envi-

ronment changes, even though it could be possible if a faster way of determining the cost

function was used. Other possible improvements of the algorithm include experimenting

with linear distribution of nodes which could shorten the execution duration or tailor-

ing the random node sampling function to the environment, for example goal-driven or

detection-avoiding sampling.

63

Bibliography

M. Aid, W. Burr, and T. Blanton. Project Azorian. The National Security Archive, 2010.
URL http://nsarchive.gwu.edu/nukevault/ebb305/.

Alabordache. Le sous-marin Téméraire, 2005. URL alabordache.fr.

J. F. Burns. French and British Submarines Collide. 2009. URL http://www.nytimes.

com/2009/02/17/world/europe/17submarine.html?_r=0.

B. Clark. The Emerging Era in Undersea Warfare. 2015. URL http://csbaonline.org/

publications/2015/01/undersea-warfare/.

Defence Supplier Directory. Defence Projects - Sonar 2087. URL http://www.

armedforces.co.uk/projects/raq3f8d4e1b8587c#.VucfsvnhDIU.

Department of the Navy. SURTASS - LFA. URL http://www.surtass-lfa-eis.com/.

ESR. OSCAR third degree resolution ocean surface currents, 2009. URL ftp://podaac-

ftp.jpl.nasa.gov/allData/oscar/preview/L4/oscar_third_deg/.

S. J. Freedberg. Transparent Sea: The Unstealthy Future Of Submarines. Breaking Defense,
2015.

F.-S. Gady. World’s Largest Anti-Submarine Robot Ship Ready for Sea-Trials in April.
The Diplomat, 2016. URL http://thediplomat.com/2016/02/worlds-largest-anti-

submarine-robot-ship-ready-for-sea-trials-in-april/.

O. Grodzevich and O. Romanko. Normalization and other topics in multi-objective opti-
mization. 2006.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–
107, 1968. doi: 10.1109/tssc.1968.300136. URL http://dx.doi.org/10.1109/TSSC.

1968.300136.

O. Hrstka, Š. Kopřiva, J. Zelinka, and O. Vaněk. BANDIT Phase 1 report. Technical
report, 2015.

J. Jenkins. Ocean Optics: Fundamentals & Naval Applications Technical Training
Short Course Samples, 2012. URL http://www.slideshare.net/aticourses/ocean-

optics-fundamentals-naval-applications-technical-training-short-course-

sampler.

S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal motion
planning. arXiv preprint arXiv:1005.0416, 2010. URL http://roboticsproceedings.

org/rss06/p34.pdf.

65

http://nsarchive.gwu.edu/nukevault/ebb305/
alabordache.fr
http://www.nytimes.com/2009/02/17/world/europe/17submarine.html?_r=0
http://www.nytimes.com/2009/02/17/world/europe/17submarine.html?_r=0
http://csbaonline.org/publications/2015/01/undersea-warfare/
http://csbaonline.org/publications/2015/01/undersea-warfare/
http://www.armedforces.co.uk/projects/raq3f8d4e1b8587c#.VucfsvnhDIU
http://www.armedforces.co.uk/projects/raq3f8d4e1b8587c#.VucfsvnhDIU
http://www.surtass-lfa-eis.com/
ftp://podaac-ftp.jpl.nasa.gov/allData/oscar/preview/L4/oscar_third_deg/
ftp://podaac-ftp.jpl.nasa.gov/allData/oscar/preview/L4/oscar_third_deg/
http://thediplomat.com/2016/02/worlds-largest-anti-submarine-robot-ship-ready-for-sea-trials-in-april/
http://thediplomat.com/2016/02/worlds-largest-anti-submarine-robot-ship-ready-for-sea-trials-in-april/
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://www.slideshare.net/aticourses/ocean-optics-fundamentals-naval-applications-technical-training-short-course-sampler
http://www.slideshare.net/aticourses/ocean-optics-fundamentals-naval-applications-technical-training-short-course-sampler
http://www.slideshare.net/aticourses/ocean-optics-fundamentals-naval-applications-technical-training-short-course-sampler
http://roboticsproceedings.org/rss06/p34.pdf
http://roboticsproceedings.org/rss06/p34.pdf

S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion plan-
ning using the RRT*. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1478–1483. IEEE, 2011.

F. Klügl. Agent-based Simulation Engineering. PhD thesis, University of Würzburg, 2009.

G. A. Korn and T. M. Korn. Mathematical Handbook for Scientists and Engineers. Mcgraw-
Hill (Tx), 1967. ISBN 0070353700.

S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Planning. 10 1998.
URL http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf.

S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and Prospects.
2001. URL http://msl.cs.illinois.edu/~lavalle/papers/LavKuf01.pdf.

B. Li, R. Chiong, and L.-g. Gong. Search-evasion path planning for submarines using the
artificial bee colony algorithm. pages 528–535, 2014.

E. H. Lundquist. When Triton Circumnavigated the Globe. Defense Media Net-
work, 2013. URL http://www.defensemedianetwork.com/stories/when-triton-

circumnavigated-the-globe/.

S. Magnuson. DARPA’s 130-Foot Crewless Ship to Set Sail in Spring. National De-
fense Magazine, 2016. URL http://www.nationaldefensemagazine.org/blog/Lists/

Posts/Post.aspx?ID=2082.

P. Marks. Quantum positioning system steps in when GPS fails. New Scientist,
2014. URL https://www.newscientist.com/article/mg22229694-000-quantum-

positioning-system-steps-in-when-gps-fails/.

National Geophysical Data Center. 2-minute Gridded Global Relief Data (ETOPO2)
v2, 2006. URL https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-

2006/ETOPO2v2c/.

M. Saha. Motion Planning with Probabilistic Roadmaps. PhD thesis, Stanford University,
2006.

J. Vincent. The US Navy’s new autonomous warship is called the Sea Hunter. The Verge,
2016.

G. Wren and D. May. Detection of Submerged Vessels Using Remote Sensing Tech-
niques. Australian Defence Force Journal, 1997. URL https://fas.org/nuke/guide/

usa/slbm/detection.pdf.

66

http://msl.cs.illinois.edu/~lavalle/papers/Lav98c.pdf
http://msl.cs.illinois.edu/~lavalle/papers/LavKuf01.pdf
http://www.defensemedianetwork.com/stories/when-triton-circumnavigated-the-globe/
http://www.defensemedianetwork.com/stories/when-triton-circumnavigated-the-globe/
http://www.nationaldefensemagazine.org/blog/Lists/Posts/Post.aspx?ID=2082
http://www.nationaldefensemagazine.org/blog/Lists/Posts/Post.aspx?ID=2082
https://www.newscientist.com/article/mg22229694-000-quantum-positioning-system-steps-in-when-gps-fails/
https://www.newscientist.com/article/mg22229694-000-quantum-positioning-system-steps-in-when-gps-fails/
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ETOPO2v2c/
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ETOPO2v2c/
https://fas.org/nuke/guide/usa/slbm/detection.pdf
https://fas.org/nuke/guide/usa/slbm/detection.pdf

Appendices

67

Appendix A

CD content

Attached CD contains source codes of the algorithms, runnable GUI, and the thesis
in the PDF format. The structure of the CD is described in the following table.

Folder or file Description

dependency folder with compiled external libraries
output folder where the outputs of the program are saved
SVP folder containing the source codes of the project
BP-1.0-SNAPSHOT.jar compiled source codes of the project
startGUI.bat scripts for MS Windows and GNU/Linux that start the

GUI using the compiled sourcesstartGUI.sh

thesis.pdf text of the thesis

Table A.1: Directory structure of the CD.

The default planning area in the GUI is Central America, that corresponds to the
latitudes between 35◦ N and 15◦ S and longitudes between 120◦ W and 60◦ W.

The application can not be run directly from the CD, because the planned paths in
the output folder can not be overwritten on the disc. The solution therefore is to copy
the files and run the application from a different location. Note that the resources in the
SVP/src/main/resources folder are required to run the application. The folder includes
the depth data, maps and the configuration file for BANDIT simulation.

68

Appendix B

Used settings

Since listing the extensive settings of the planning algorithm and grid directly next
to each result might interrupt the readers’ attention, the settings are presented here and
are briefly linked in the text.

B.1 Example output

Variable Value

Northwestern point of the grid 69.5◦ N, 100.8◦ E
Southeastern point of the grid 20◦ S, 65.7◦ W

Size of cell s 100 kilometres
Depth sampling interval ∆d 50 metres

Maximal depth m 50 metres
Steer distance ε 300 kilometres

Duration of one time window D 24 hours
End time window E 2

Generated amount of nodes N 400
Optimization radius d 1500 kilometres

Maximal travelled distance in one time window 1200 kilometres
Maximal time submerged tsubmerged 3

Distance weight w1 10
RD weight w2 1000

Time weight w3 10000
Generated trees 3

Paths taken from each tree 2
Starting point pinit 2◦ N, 83◦ W
Target point ptarget 11.4◦ N, 96◦ W

Detectors:

• Uniform detector with the centre at 2◦ N, 92◦ W, radius 800 kilometres, risk value
0.5, active in time frames from 0 to 2. No depth influence.

69

B.2 Experiment 1

Variable Value

Northwestern point of the grid 69.5◦ N, 100.8◦ E
Southeastern point of the grid 38.3◦ S, 65.7◦ W

Size of cell s 200 kilometres
Depth sampling interval ∆d 50 metres

Maximal depth m 20 metres
Steer distance ε 600 kilometres

Duration of one time window D 48 hours
End time window E 4

Generated amount of nodes N 1500
Optimization radius d 1500 kilometres

Maximal travelled distance in one time window 2200 kilometres
Maximal time submerged tsubmerged 1

Distance weight w1 1
RD weight w2 50000

Time weight w3 100
Generated trees 8

Paths taken from each tree 1
Starting point pinit 40.4◦ N, 158.5◦ W
Target point ptarget 35.7◦ S, 136.3◦ W

Detectors:

• Uniform detector with the centre at 20.5◦ N, 158.9◦ W, radius 1600 kilometres, risk
value 0.3, active in time frame 2. No depth influence.

• Uniform detector with the centre at 29.2◦ N, 137.4◦ W, radius 1600 kilometres, risk
value 0.3, active in time frame 2. No depth influence.

• Gaussian detector with the centre at 19◦ S, 137◦ W, standard deviation 800 kilome-
tres, risk value at the centre 0.4, active in time frame 2. No depth influence.

• Gaussian detector with the centre at 5◦ S, 137◦ W, standard deviation 800 kilometres,
risk value at the centre 0.4, active in time frame 2. No depth influence.

B.3 Experiments 2 and 3

The settings are the same as in the Settings 2, except the detectors are active from
the time frame 2 to 4 and the maximal travelled distance in one time window was increased
to 3000 kilometres. The amount of nodes N changes, as defined in the Tables 5.3 and 5.4,
if N is not specified, it equals 3000.

70

B.4 Obstacle avoidance

Variable Value

Northwestern point of the grid 47◦ N, 9◦ W
Southeastern point of the grid 30◦ N, 34◦ E

Size of cell s 50 kilometres
Depth sampling interval ∆d 50 metres

Maximal depth m 20 metres
Steer distance ε 600 kilometres

Duration of one time window D 48 hours
End time window E 2

Generated amount of nodes N 3000
Optimization radius d 1500 kilometres

Maximal travelled distance in one time window 2500 kilometres
Maximal time submerged tsubmerged 1

Distance weight w1 1
RD weight w2 5000

Time weight w3 1000
Generated trees 10

Paths taken from each tree 1
Starting point pinit 35.8◦ N, 7.8◦ W
Target point ptarget 43.6◦ S, 14.22◦ E

Optional detectors (as explained in the second test scenario):

• Uniform detector with the centre at 35.9◦ N, 5.68◦ W, radius 50 kilometres, risk value
1, active in time frame 0. No depth influence.

• Uniform detector with the centre at 35.9◦ N, 5.68◦ W, radius 50 kilometres, risk value
1, active in time frame 2. No depth influence.

71

B.5 Array of detectors

Variable Value

Northwestern point of the grid 0◦ N, 140◦ W
Southeastern point of the grid 30◦ S, 110◦ W

Size of cell s 30 kilometres
Depth sampling interval ∆d 50 metres

Maximal depth m 20 metres
Steer distance ε 600 kilometres

Duration of one time window D 168 hours
End time window E 0

Generated amount of nodes N 1000
Optimization radius d 1500 kilometres

Maximal travelled distance in one time window 5000 kilometres
Maximal time submerged tsubmerged 1

Distance weight w1 1
RD weight w2 5000, 100, 10, 0

Time weight w3 0
Generated trees 10

Paths taken from each tree 1
Starting point pinit 2.5◦ N, 132.5◦ W
Target point ptarget 27.5◦ S, 112.5◦ W

The used detectors were uniform with radius 200 kilometres, risk value 1, active in
time frame 0 without depth influence. Their centres are defined as follows.

• For all the latitudes 30◦ S, 25◦ S, 20◦ S, 15◦ S, 10◦ S, 5◦ S, 0◦ N, 5◦ N, 10◦ N, 15◦

N, 20◦ N, 25◦ N, 30◦ N the latitudes are 150◦ W, 140◦ W, 130◦ W, 120◦ W, 110◦ W,
100◦ W, 90◦ W.

• For all the latitudes 27.5◦ S, 22.5◦ S, 17.5◦ S, 12.5◦ S, 7.5◦ S, 2.5◦ S, 2.5◦ N, 7.5◦ N,
12.5◦ N, 17.5◦ N, 22.5◦ N, 27.5◦ N the latitudes are 145◦ W, 135◦ W, 125◦ W, 115◦

W, 105◦ W, 95◦ W, 85◦ W.

72

B.6 Sailing under a detector

Variable Value

Northwestern point of the grid 20◦ S, 50◦ E
Southeastern point of the grid 50◦ S, 90◦ E

Size of cell s 100 kilometres
Depth sampling interval ∆d 50 metres

Maximal depth m 100 metres
Steer distance ε 600 kilometres

Duration of one time window D 24 hours
End time window E 3

Generated amount of nodes N 2000
Optimization radius d 1500 kilometres

Maximal travelled distance in one time window 1230 kilometres
Maximal time submerged tsubmerged 4

Distance weight w1 1
RD weight w2 50

Time weight w3 100
Generated trees 10

Paths taken from each tree 1
Starting point pinit 25◦ S, 85◦ E
Target point ptarget 45◦ S, 55◦ E

Detectors for i = 0, 1, 2, 3:

• Uniform detector with the centre at (37 + i· 0.5)◦ S, (72 - i· 0.5)◦ E, radius 1000
kilometres, risk value 1, active in time frame i. Exponential decrease of risk value
with depth, decrease by 0.5 in 50 metres.

73

	Thesis overview
	Domain background
	Objectives
	Capabilities
	Detection
	Historical development and views to the future

	Related work
	Planning algorithms
	Rapidly-Exploring Random Trees
	RRT*
	Artificial Bee Colony algorithm
	Probabilistic Roadmap

	Simulations

	Formalization
	Grid
	Implementation of the grid
	Cells

	Cost function
	Creating list of cells on given path
	Time windows
	Form of the cost function
	Risk of detection

	Problem definition
	Constraints on movement

	Algorithms
	Unbalanced versions
	Balanced versions
	Summary of the algorithms

	Implementation
	BANDIT
	Agent Behaviour Model
	The model of a submarine

	Inputs of the path planning process
	Grid parameters
	Planning algorithm parameters
	Parameter tuning

	Output
	Use in practice

	Evaluation
	Comparison of the algorithms
	Experiment 1
	Experiment 2
	Experiment 3
	Summary

	Time complexity
	Cell size
	The optimization radius
	Analysis of a single execution
	Summary

	Test scenarios
	Array of detectors
	Obstacle avoidance
	Sailing under a detector
	Discussion

	Conclusion
	Appendices
	CD content
	Used settings
	Example output
	Experiment 1
	Experiments 2 and 3
	Obstacle avoidance
	Array of detectors
	Sailing under a detector

